欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
Flink处理函数实战系列链接
- 深入了解ProcessFunction的状态操作(Flink-1.10);
- ProcessFunction;
- KeyedProcessFunction类;
- ProcessAllWindowFunction(窗口处理);
- CoProcessFunction(双流处理);
本篇概览
- 本文是《Flink处理函数实战》系列的第五篇,学习内容是如何同时处理两个数据源的数据;
-
试想在面对两个输入流时,如果这两个流的数据之间有业务关系,该如何编码实现呢,例如下图中的操作,同时监听<font color="blue">9998</font>和<font color="blue">9999</font>端口,将收到的输出分别处理后,再由同一个sink处理(打印):
在这里插入图片描述 -
Flink支持的方式是扩展CoProcessFunction来处理,为了更清楚认识,我们把<font color="blue">KeyedProcessFunction</font>和<font color="blue">CoProcessFunction</font>的类图摆在一起看,如下所示:
在这里插入图片描述 - 从上图可见,CoProcessFunction和KeyedProcessFunction的继承关系一样,另外CoProcessFunction自身也很简单,在processElement1和processElement2中分别处理两个上游流入的数据即可,并且也支持定时器设置;
编码实战
接下来咱们开发一个应用来体验<font color="blue">CoProcessFunction</font>,功能非常简单,描述如下:
- 建两个数据源,数据分别来自本地<font color="red">9998</font>和<font color="red">9999</font>端口;
- 每个端口收到类似<font color="blue">aaa,123</font>这样的数据,转成Tuple2实例,f0是<font color="blue">aaa</font>,f1是<font color="blue">123</font>;
- 在CoProcessFunction的实现类中,对每个数据源的数据都打日志,然后全部传到下游算子;
- 下游操作是打印,因此<font color="red">9998</font>和<font color="red">9999</font>端口收到的所有数据都会在控制台打印出来;
-
整个demo的功能如下图所示:
在这里插入图片描述
- 接下来编码实现上述功能;
源码下载
如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
名称 | 链接 | 备注 |
---|---|---|
项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
这个git项目中有多个文件夹,本章的应用在<font color="blue">flinkstudy</font>文件夹下,如下图红框所示:
在这里插入图片描述
Map算子
- 做一个map算子,用来将字符串<font color="blue">aaa,123</font>转成Tuple2实例,f0是<font color="red">aaa</font>,f1是<font color="red">123</font>;
- 算子名为<font color="blue">WordCountMap.java</font>:
package com.bolingcavalry.coprocessfunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.StringUtils;
public class WordCountMap implements MapFunction<String, Tuple2<String, Integer>> {
@Override
public Tuple2<String, Integer> map(String s) throws Exception {
if(StringUtils.isNullOrWhitespaceOnly(s)) {
System.out.println("invalid line");
return null;
}
String[] array = s.split(",");
if(null==array || array.length<2) {
System.out.println("invalid line for array");
return null;
}
return new Tuple2<>(array[0], Integer.valueOf(array[1]));
}
}
便于扩展的抽象类
-
开发一个抽象类,将前面图中提到的监听端口、map处理、keyby处理、打印都做到这个抽象类中,但是CoProcessFunction的逻辑却不放在这里,而是交给子类来实现,这样如果我们想进一步实践和扩展CoProcessFunction的能力,只要在子类中专注做好CoProcessFunction相关开发即可,如下图,红色部分交给子类实现,其余的都是抽象类完成的:
在这里插入图片描述 - 抽象类AbstractCoProcessFunctionExecutor.java,源码如下,稍后会说明几个关键点:
package com.bolingcavalry.coprocessfunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
/**
* @author will
* @email zq2599@gmail.com
* @date 2020-11-09 17:33
* @description 串起整个逻辑的执行类,用于体验CoProcessFunction
*/
public abstract class AbstractCoProcessFunctionExecutor {
/**
* 返回CoProcessFunction的实例,这个方法留给子类实现
* @return
*/
protected abstract CoProcessFunction<
Tuple2<String, Integer>,
Tuple2<String, Integer>,
Tuple2<String, Integer>> getCoProcessFunctionInstance();
/**
* 监听根据指定的端口,
* 得到的数据先通过map转为Tuple2实例,
* 给元素加入时间戳,
* 再按f0字段分区,
* 将分区后的KeyedStream返回
* @param port
* @return
*/
protected KeyedStream<Tuple2<String, Integer>, Tuple> buildStreamFromSocket(StreamExecutionEnvironment env, int port) {
return env
// 监听端口
.socketTextStream("localhost", port)
// 得到的字符串"aaa,3"转成Tuple2实例,f0="aaa",f1=3
.map(new WordCountMap())
// 将单词作为key分区
.keyBy(0);
}
/**
* 如果子类有侧输出需要处理,请重写此方法,会在主流程执行完毕后被调用
*/
protected void doSideOutput(SingleOutputStreamOperator<Tuple2<String, Integer>> mainDataStream) {
}
/**
* 执行业务的方法
* @throws Exception
*/
public void execute() throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 并行度1
env.setParallelism(1);
// 监听9998端口的输入
KeyedStream<Tuple2<String, Integer>, Tuple> stream1 = buildStreamFromSocket(env, 9998);
// 监听9999端口的输入
KeyedStream<Tuple2<String, Integer>, Tuple> stream2 = buildStreamFromSocket(env, 9999);
SingleOutputStreamOperator<Tuple2<String, Integer>> mainDataStream = stream1
// 两个流连接
.connect(stream2)
// 执行低阶处理函数,具体处理逻辑在子类中实现
.process(getCoProcessFunctionInstance());
// 将低阶处理函数输出的元素全部打印出来
mainDataStream.print();
// 侧输出相关逻辑,子类有侧输出需求时重写此方法
doSideOutput(mainDataStream);
// 执行
env.execute("ProcessFunction demo : CoProcessFunction");
}
}
- 关键点之一:一共有两个数据源,每个源的处理逻辑都封装到<font color="blue">buildStreamFromSocket</font>方法中;
- 关键点之二:<font color="blue">stream1.connect(stream2)</font>将两个流连接起来;
- 关键点之三:<font color="blue">process</font>接收CoProcessFunction实例,合并后的流的处理逻辑就在这里面;
- 关键点之四:<font color="blue">getCoProcessFunctionInstance</font>是抽象方法,返回<font color="blue">CoProcessFunction</font>实例,交给子类实现,所以CoProcessFunction中做什么事情完全由子类决定;
- 关键点之五:doSideOutput方法中啥也没做,但是在主流程代码的末尾会被调用,如果子类有侧输出(SideOutput)的需求,重写此方法即可,此方法的入参是处理过的数据集,可以从这里取得侧输出;
子类决定CoProcessFunction的功能
- 子类<font color="blue">CollectEveryOne.java</font>如下所示,逻辑很简单,将每个源的上游数据直接输出到下游算子:
package com.bolingcavalry.coprocessfunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class CollectEveryOne extends AbstractCoProcessFunctionExecutor {
private static final Logger logger = LoggerFactory.getLogger(CollectEveryOne.class);
@Override
protected CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> getCoProcessFunctionInstance() {
return new CoProcessFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>>() {
@Override
public void processElement1(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) {
logger.info("处理1号流的元素:{},", value);
out.collect(value);
}
@Override
public void processElement2(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Integer>> out) {
logger.info("处理2号流的元素:{}", value);
out.collect(value);
}
};
}
public static void main(String[] args) throws Exception {
new CollectEveryOne().execute();
}
}
- 上述代码中,CoProcessFunction后面的泛型定义很长:<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> ,一共三个Tuple2,分别代表一号数据源输入、二号数据源输入、下游输出的类型;
验证
- 分别开启本机的<font color="blue">9998</font>和<font color="blue">9999</font>端口,我这里是MacBook,执行<font color="blue">nc -l 9998</font>和<font color="blue">nc -l 9999</font>
- 启动Flink应用,如果您和我一样是Mac电脑,直接运行<font color="blue">CollectEveryOne.main</font>方法即可(如果是windows电脑,我这没试过,不过做成jar在线部署也是可以的);
- 在监听9998和9999端口的控制台分别输入<font color="blue">aaa,111</font>和<font color="blue">bbb,222</font>
- 以下是flink控制台输出的内容,可见processElement1和processElement1方法的日志代码已经执行,并且print方法作为最下游,将两个数据源的数据都打印出来了,符合预期:
12:45:38,774 INFO CollectEveryOne - 处理1号流的元素:(aaa,111),
(aaa,111)
12:45:43,816 INFO CollectEveryOne - 处理2号流的元素:(bbb,222)
(bbb,222)
更多
- 以上就是最基本的CoProcessFunction用法,其实CoProcessFunction的使用远不及此,结合状态,可以<font color="blue">processElement1</font>获得更多二号流的元素信息,另外还可以结合定时器来约束两个流协同处理的等待时间,您可以参考前面文章中的状态和定时器来自行尝试;
你不孤单,欣宸原创一路相伴
欢迎关注公众号:程序员欣宸
微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...
https://github.com/zq2599/blog_demos
网友评论