Swift-协议

作者: wg刚 | 来源:发表于2019-01-17 17:00 被阅读0次

    最近项目使用的是OC,后头看之前用Swift开发的一个项目时,发现很多细节都忘记了😭😭。
    为了回忆和以后方便查看,现在根据官方文档swift编程语言,做下笔记。

    1、语法

    protocol SomeProtocol {
        // 这里是协议的定义部分
    }
    

    要让自定义类型遵循某个协议,在定义类型时,需要在类型名称后加上协议名称,中间以冒号(:)分隔。遵循多个协议时,各协议之间用逗号(,)分隔:

    struct SomeStructure: FirstProtocol, AnotherProtocol {
        // 这里是结构体的定义部分
    }
    

    拥有父类的类在遵循协议时,应该将父类名放在协议名之前,以逗号分隔:

    class SomeClass: SomeSuperClass, FirstProtocol, AnotherProtocol {
        // 这里是类的定义部分
    }
    

    2、属性

    协议可以要求遵循协议的类型提供特定名称和类型的实例属性或类型属性。协议不指定属性是存储型属性还是计算型属性,它只指定属性的名称和类型。此外,协议还指定属性是可读的还是可读可写的。

    协议总是用 var 关键字来声明变量属性,在类型声明后加上 { set get } 来表示属性是可读可写的,可读属性则用 { get } 来表示

    protocol SomeProtocol {
        var mustBeSettable: Int { get set }
        var doesNotNeedToBeSettable: Int { get }
    }
    

    在协议中定义类型属性时,总是使用 static 关键字作为前缀。当类类型遵循协议时,除了 static 关键字,还可以使用 class 关键字来声明类型属性

    protocol AnotherProtocol {
        static var someTypeProperty: Int { get set }
    }
    

    如下所示,这是一个只含有一个实例属性要求的协议

    protocol FullyNamed {
        var fullName: String { get }
    }
    

    FullyNamed 协议除了要求遵循协议的类型提供 fullName 属性外,并没有其他特别的要求。这个协议表示,任何遵循 FullyNamed 的类型,都必须有一个可读的 String 类型的实例属性 fullName

    下面是一个遵循 FullyNamed 协议的简单结构体

    struct Person: FullyNamed {
        var fullName: String
    }
    let john = Person(fullName: "John Appleseed")
    // john.fullName 为 "John Appleseed"
    

    3、方法

    协议可以要求遵循协议的类型实现某些指定的实例方法或类方法。这些方法作为协议的一部分,像普通方法一样放在协议的定义中,但是不需要大括号和方法体。可以在协议中定义具有可变参数的方法,和普通方法的定义方式相同。但是,不支持为协议中的方法的参数提供默认值。

    在协议中定义类方法的时候,总是使用 static 关键字作为前缀。当类类型遵循协议时,除了 static 关键字,还可以使用 class 关键字作为前缀

    protocol SomeProtocol {
        static func someTypeMethod()
    }
    

    下面的例子定义了一个只含有一个实例方法的协议

    protocol RandomNumberGenerator {
        func random() -> Double
    }
    

    RandomNumberGenerator 协议要求遵循协议的类型必须拥有一个名为 random, 返回值类型为 Double 的实例方法。

    下边是一个遵循并符合 RandomNumberGenerator 协议的类。该类实现了一个叫做 线性同余生成器的伪随机数算法。

    class LinearCongruentialGenerator: RandomNumberGenerator {
        var lastRandom = 42.0
        let m = 139968.0
        let a = 3877.0
        let c = 29573.0
        func random() -> Double {
            lastRandom = ((lastRandom * a + c).truncatingRemainder(dividingBy:m))
            return lastRandom / m
        }
    }
    let generator = LinearCongruentialGenerator()
    print("Here's a random number: \(generator.random())")
    // 打印 “Here's a random number: 0.37464991998171”
    print("And another one: \(generator.random())")
    // 打印 “And another one: 0.729023776863283”
    

    4、可变方法

    有时需要在方法中改变方法所属的实例。例如,在值类型(即结构体和枚举)的实例方法中,将 mutating 关键字作为方法的前缀,写在 func 关键字之前,表示可以在该方法中修改它所属的实例以及实例的任意属性的值。

    注意实现协议中的 mutating 方法时,若是类类型,则不用写 mutating 关键字。而对于结构体和枚举,则必须写 mutating 关键字。

    如下所示,Togglable 协议只要求实现一个名为 toggle 的实例方法。

    protocol Togglable {
        mutating func toggle()
    }
    

    当使用枚举或结构体来实现 Togglable 协议时,需要提供一个带有 mutating 前缀的 toggle() 方法。

    下面定义了一个名为 OnOffSwitch 的枚举。这个枚举在两种状态之间进行切换,用枚举成员 On 和 Off 表示。枚举的 toggle() 方法被标记为 mutating,以满足 Togglable 协议的要求

    enum OnOffSwitch: Togglable {
        case off, on
        mutating func toggle() {
            switch self {
            case .off:
                self = .on
            case .on:
                self = .off
            }
        }
    }
    var lightSwitch = OnOffSwitch.off
    lightSwitch.toggle()
    // lightSwitch 现在的值为 .On
    

    5、构造器

    协议可以要求遵循协议的类型实现指定的构造器。你可以像编写普通构造器那样,在协议的定义里写下构造器的声明,但不需要写花括号和构造器的实体

    protocol SomeProtocol {
        init(someParameter: Int)
    }
    
    • 构造器在类中的实现

    在遵循协议的类中实现构造器,无论是作为指定构造器,还是作为便利构造器。无论哪种情况,你都必须为构造器实现标上 required 修饰符:

    class SomeClass: SomeProtocol {
        required init(someParameter: Int) {
            // 这里是构造器的实现部分
        }
    }
    

    使用 required 修饰符可以确保所有子类也必须提供此构造器实现,从而也能符合协议

    如果类已经被标记为 final,那么不需要在协议构造器的实现中使用 required 修饰符,因为 final 类不能有子类。

    如果一个子类重写了父类的指定构造器,并且该构造器满足了某个协议的要求,那么该构造器的实现需要同时标注 required 和 override 修饰符:

    protocol SomeProtocol {
        init()
    }
    
    class SomeSuperClass {
        init() {
            // 这里是构造器的实现部分
        }
    }
    
    class SomeSubClass: SomeSuperClass, SomeProtocol {
        // 因为遵循协议,需要加上 required
        // 因为继承自父类,需要加上 override
        required override init() {
            // 这里是构造器的实现部分
        }
    }
    

    6、协议可作为类型

    协议可以像其他普通类型一样使用,使用场景如下:
    作为函数、方法或构造器中的参数类型或返回值类型
    作为常量、变量或属性的类型
    作为数组、字典或其他容器中的元素类型

    下面是将协议作为类型使用的例子

    class Dice {
        let sides: Int
        let generator: RandomNumberGenerator
        init(sides: Int, generator: RandomNumberGenerator) {
            self.sides = sides
            self.generator = generator
        }
        func roll() -> Int {
            return Int(generator.random() * Double(sides)) + 1
        }
    }
    

    例子中定义了一个 Dice 类,用来代表桌游中拥有 N 个面的骰子。Dice 的实例含有 sides 和 generator 两个属性,前者是整型,用来表示骰子有几个面,后者为骰子提供一个随机数生成器,从而生成随机点数。
    generator 属性的类型为 RandomNumberGenerator,因此任何遵循了 RandomNumberGenerator 协议的类型的实例都可以赋值给 generator,除此之外并无其他要求。
    Dice 类还有一个构造器,用来设置初始状态。构造器有一个名为 generator,类型为 RandomNumberGenerator 的形参。在调用构造方法创建 Dice 的实例时,可以传入任何遵循 RandomNumberGenerator 协议的实例给 generator。

    下面的例子展示了如何使用 LinearCongruentialGenerator 的实例作为随机数生成器来创建一个六面骰子

    var d6 = Dice(sides: 6, generator: LinearCongruentialGenerator())
    for _ in 1...5 {
        print("Random dice roll is \(d6.roll())")
    }
    // Random dice roll is 3
    // Random dice roll is 5
    // Random dice roll is 4
    // Random dice roll is 5
    // Random dice roll is 4
    

    7、代理

    它允许类或结构体将一些需要它们负责的功能委托给其他类型的实例。委托模式的实现很简单:定义协议来封装那些需要被委托的功能,这样就能确保遵循协议的类型能提供这些功能。

    下面的例子定义了两个基于骰子游戏的协议

    protocol DiceGame {
        var dice: Dice { get }
        func play()
    }
    protocol DiceGameDelegate {
        func gameDidStart(_ game: DiceGame)
        func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int)
        func gameDidEnd(_ game: DiceGame)
    }
    

    DiceGame 协议可以被任意涉及骰子的游戏遵循。DiceGameDelegate 协议可以被任意类型遵循,用来追踪 DiceGame 的游戏过程。

    下面代码:SnakesAndLadders使用 Dice 实例作为骰子,并且实现了 DiceGame 和 DiceGameDelegate 协议,后者用来记录游戏的过程

    class SnakesAndLadders: DiceGame {
        let finalSquare = 25
        let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
        var square = 0
        var board: [Int]
        init() {
            board = [Int](count: finalSquare + 1, repeatedValue: 0)
            board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
            board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
        }
         var delegate: DiceGameDelegate?
         func play() {
             square = 0
             delegate?.gameDidStart(self)
             gameLoop: while square != finalSquare {
                 let diceRoll = dice.roll()
                 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
                 switch square + diceRoll {
                 case finalSquare:
                     break gameLoop
                 case let newSquare where newSquare > finalSquare:
                     continue gameLoop
                 default:
                     square += diceRoll
                     square += board[square]
                 }
             }
             delegate?.gameDidEnd(self)
         }
    }
    

    SnakesAndLadders 类中,该类遵循了 DiceGame 协议,并且提供了相应的可读的 dice 属性和 play() 方法。( dice 属性在构造之后就不再改变,且协议只要求 dice 为可读的,因此将 dice 声明为常量属性。
    游戏使用 SnakesAndLadders 类的 init() 构造器来初始化游戏。所有的游戏逻辑被转移到了协议中的 play() 方法,play() 方法使用协议要求的 dice 属性提供骰子摇出的值。
    注意,delegate 并不是游戏的必备条件,因此 delegate 被定义为 DiceGameDelegate 类型的可选属性。因为 delegate 是可选值,因此会被自动赋予初始值 nil。随后,可以在游戏中为 delegate 设置适当的值。
    DicegameDelegate 协议提供了三个方法用来追踪游戏过程。这三个方法被放置于游戏的逻辑中,即 play() 方法内。分别在游戏开始时,新一轮开始时,以及游戏结束时被调用。
    因为 delegate 是一个 DiceGameDelegate 类型的可选属性,因此在 play() 方法中通过可选链式调用来调用它的方法。若 delegate 属性为 nil,则调用方法会优雅地失败,并不会产生错误。若 delegate 不为 nil,则方法能够被调用,并传递 SnakesAndLadders 实例作为参数。

    如下示例定义了 DiceGameTracker 类,它遵循了 DiceGameDelegate 协议

    class DiceGameTracker: DiceGameDelegate {
        var numberOfTurns = 0
        func gameDidStart(_ game: DiceGame) {
            numberOfTurns = 0
            if game is SnakesAndLadders {
                print("Started a new game of Snakes and Ladders")
            }
            print("The game is using a \(game.dice.sides)-sided dice")
        }
        func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
            numberOfTurns += 1
            print("Rolled a \(diceRoll)")
        }
        func gameDidEnd(_ game: DiceGame) {
            print("The game lasted for \(numberOfTurns) turns")
        }
    }
    

    DiceGameTracker 实现了 DiceGameDelegate 协议要求的三个方法,用来记录游戏已经进行的轮数。当游戏开始时,numberOfTurns 属性被赋值为 0,然后在每新一轮中递增,游戏结束后,打印游戏的总轮数。
    gameDidStart(:) 方法从 game 参数获取游戏信息并打印。game 参数是 DiceGame 类型而不是 SnakeAndLadders 类型,所以在gameDidStart(:) 方法中只能访问 DiceGame 协议中的内容。当然了,SnakeAndLadders 的方法也可以在类型转换之后调用。在上例代码中,通过 is 操作符检查 game 是否为 SnakesAndLadders 类型的实例,如果是,则打印出相应的消息。
    无论当前进行的是何种游戏,由于 game 符合 DiceGame 协议,可以确保 game 含有 dice 属性。因此在 gameDidStart(_:) 方法中可以通过传入的 game 参数来访问 dice 属性,进而打印出 dice 的 sides 属性的值。

    DiceGameTracker 的运行情况如下所示

    let tracker = DiceGameTracker()
    let game = SnakesAndLadders()
    game.delegate = tracker
    game.play()
    // Started a new game of Snakes and Ladders
    // The game is using a 6-sided dice
    // Rolled a 3
    // Rolled a 5
    // Rolled a 4
    // Rolled a 5
    // The game lasted for 4 turns
    

    8、通过扩展添加协议一致性

    即便无法修改源代码,依然可以通过扩展令已有类型遵循并符合协议。扩展可以为已有类型添加属性、方法、下标以及构造器,因此可以符合协议中的相应要求。

    例如下面这个 TextRepresentable 协议,任何想要通过文本表示一些内容的类型都可以实现该协议。这些想要表示的内容可以是实例本身的描述,也可以是实例当前状态的文本描述

    protocol TextRepresentable {
        var textualDescription: String { get }
    }
    

    可以通过扩展,令先前提到的 Dice 类遵循并符合 TextRepresentable 协议

    extension Dice: TextRepresentable {
        var textualDescription: String {
            return "A \(sides)-sided dice"
        }
    }
    

    通过扩展遵循并符合协议,和在原始定义中遵循并符合协议的效果完全相同。协议名称写在类型名之后,以冒号隔开,然后在扩展的大括号内实现协议要求的内容。

    现在所有 Dice 的实例都可以看做 TextRepresentable 类型

    let d12 = Dice(sides: 12, generator: LinearCongruentialGenerator())
    print(d12.textualDescription)
    // 打印 “A 12-sided dice”
    

    9、协议继承

    协议能够继承一个或多个其他协议,可以在继承的协议的基础上增加新的要求。协议的继承语法与类的继承相似,多个被继承的协议间用逗号分隔:

    protocol InheritingProtocol: SomeProtocol, AnotherProtocol {
        // 这里是协议的定义部分
    }
    

    如下所示,PrettyTextRepresentable 协议继承了 TextRepresentable 协议

    protocol PrettyTextRepresentable: TextRepresentable {
        var prettyTextualDescription: String { get }
    }
    

    例子中定义了一个新的协议 PrettyTextRepresentable,它继承自 TextRepresentable 协议。任何遵循 PrettyTextRepresentable 协议的类型在满足该协议的要求时,也必须满足 TextRepresentable 协议的要求。在这个例子中,PrettyTextRepresentable 协议额外要求遵循协议的类型提供一个返回值为 String 类型的 prettyTextualDescription 属性。

    如下所示,扩展 SnakesAndLadders,使其遵循并符合 PrettyTextRepresentable 协议

    extension SnakesAndLadders: PrettyTextRepresentable {
        var prettyTextualDescription: String {
            var output = textualDescription + ":\n"
            for index in 1...finalSquare {
                switch board[index] {
                case let ladder where ladder > 0:
                    output += "▲ "
                case let snake where snake < 0:
                    output += "▼ "
                default:
                    output += "○ "
                }
            }
            return output
        }
    }
    

    上述扩展令 SnakesAndLadders 遵循了 PrettyTextRepresentable 协议,并提供了协议要求的 prettyTextualDescription 属性。每个 PrettyTextRepresentable 类型同时也是 TextRepresentable 类型,所以在 prettyTextualDescription 的实现中,可以访问 textualDescription 属性。然后,拼接上了冒号和换行符。接着,遍历数组中的元素,拼接一个几何图形来表示每个棋盘方格的内容

    print(game.prettyTextualDescription)
    // A game of Snakes and Ladders with 25 squares:
    // ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○
    

    10、类类型专属协议

    你可以在协议的继承列表中,通过添加 class 关键字来限制协议只能被类类型遵循,而结构体或枚举不能遵循该协议。class 关键字必须第一个出现在协议的继承列表中,在其他继承的协议之前

    protocol SomeClassOnlyProtocol: class, SomeInheritedProtocol {
        // 这里是类类型专属协议的定义部分
    }
    

    11、协议合成

    有时候需要同时遵循多个协议,你可以将多个协议采用 SomeProtocol & AnotherProtocol 这样的格式进行组合,称为 协议合成(protocol composition)。你可以罗列任意多个你想要遵循的协议,以与符号(&)分隔。

    protocol Named {
        var name: String { get }
    }
    protocol Aged {
        var age: Int { get }
    }
    struct Person: Named, Aged {
        var name: String
        var age: Int
    }
    func wishHappyBirthday(to celebrator: Named & Aged) {
        print("Happy birthday, \(celebrator.name), you're \(celebrator.age)!")
    }
    let birthdayPerson = Person(name: "Malcolm", age: 21)
    wishHappyBirthday(to: birthdayPerson)
    // 打印 “Happy birthday Malcolm - you're 21!”
    

    12、检查协议一致性

    is 用来检查实例是否符合某个协议,若符合则返回 true,否则返回 false。
    as? 返回一个可选值,当实例符合某个协议时,返回类型为协议类型的可选值,否则返回 nil。
    as! 将实例强制向下转换到某个协议类型,如果强转失败,会引发运行时错误。

    下面的例子定义了一个 HasArea 协议,该协议定义了一个 Double 类型的可读属性 area

    protocol HasArea {
        var area: Double { get }
    }
    

    Circle 类和 Country 类都遵循了 HasArea 协议

    class Circle: HasArea {
        let pi = 3.1415927
        var radius: Double
        var area: Double { return pi * radius * radius }
        init(radius: Double) { self.radius = radius }
    }
    class Country: HasArea {
        var area: Double
        init(area: Double) { self.area = area }
    }
    

    Animal 是一个未遵循 HasArea 协议的类

    class Animal {
        var legs: Int
        init(legs: Int) { self.legs = legs }
    }
    

    它们都是类,它们的实例都可以作为 AnyObject 类型的值,存储在同一个数组中

    let objects: [AnyObject] = [
        Circle(radius: 2.0),
        Country(area: 243_610),
        Animal(legs: 4)
    ]
    

    objects 数组可以被迭代,并对迭代出的每一个元素进行检查,看它是否符合 HasArea 协议

    for object in objects {
        if let objectWithArea = object as? HasArea {
            print("Area is \(objectWithArea.area)")
        } else {
            print("Something that doesn't have an area")
        }
    }
    // Area is 12.5663708
    // Area is 243610.0
    // Something that doesn't have an area
    

    当迭代出的元素符合 HasArea 协议时,将 as? 操作符返回的可选值通过可选绑定,绑定到 objectWithArea 常量上。objectWithArea 是 HasArea 协议类型的实例,因此 area 属性可以被访问和打印。
    objects 数组中的元素的类型并不会因为强转而丢失类型信息,它们仍然是 Circle,Country,Animal 类型。然而,当它们被赋值给 objectWithArea 常量时,只被视为 HasArea 类型,因此只有 area 属性能够被访问。

    13、可选的协议要求

    协议可以定义可选要求,遵循协议的类型可以选择是否实现这些要求。在协议中使用 optional 关键字作为前缀来定义可选要求。可选要求用在你需要和 Objective-C 打交道的代码中。协议和可选要求都必须带上@objc属性。标记 @objc 特性的协议只能被继承自 Objective-C 类的类或者 @objc 类遵循,其他类以及结构体和枚举均不能遵循这种协议。

    使用可选要求时(例如,可选的方法或者属性),它们的类型会自动变成可选的。比如,一个类型为 (Int) -> String 的方法会变成 ((Int) -> String)?。需要注意的是整个函数类型是可选的,而不是函数的返回值。

    下面的例子定义了一个名为 Counter 的用于整数计数的类,它使用外部的数据源来提供每次的增量。数据源由 CounterDataSource 协议定义,包含两个可选要求

    @objc protocol CounterDataSource {
        @objc optional func incrementForCount(count: Int) -> Int
        @objc optional var fixedIncrement: Int { get }
    }
    

    Counter 类含有 CounterDataSource? 类型的可选属性 dataSource,如下所示

    class Counter {
        var count = 0
        var dataSource: CounterDataSource?
        func increment() {
            if let amount = dataSource?.incrementForCount?(count) {
                count += amount
            } else if let amount = dataSource?.fixedIncrement {
                count += amount
            }
        }
    }
    

    下面的例子展示了 CounterDataSource 的简单实现。ThreeSource 类遵循了 CounterDataSource 协议,它实现了可选属性 fixedIncrement,每次会返回 3

    class ThreeSource: NSObject, CounterDataSource {
        let fixedIncrement = 3
    }
    

    可以使用 ThreeSource 的实例作为 Counter 实例的数据源

    var counter = Counter()
    counter.dataSource = ThreeSource()
    for _ in 1...4 {
        counter.increment()
        print(counter.count)
    }
    // 3
    // 6
    // 9
    // 12
    

    上述代码新建了一个 Counter 实例,并将它的数据源设置为一个 ThreeSource 的实例,然后调用 increment() 方法四次。和预期一样,每次调用都会将 count 的值增加 3

    14、协议扩展

    协议可以通过扩展来为遵循协议的类型提供属性、方法以及下标的实现。通过这种方式,你可以基于协议本身来实现这些功能,而无需在每个遵循协议的类型中都重复同样的实现,也无需使用全局函数

    例如,可以扩展 RandomNumberGenerator 协议来提供 randomBool() 方法。该方法使用协议中定义的 random() 方法来返回一个随机的 Bool 值

    extension RandomNumberGenerator {
        func randomBool() -> Bool {
            return random() > 0.5
        }
    }
    

    通过协议扩展,所有遵循协议的类型,都能自动获得这个扩展所增加的方法实现,无需任何额外修改:

    let generator = LinearCongruentialGenerator()
    print("Here's a random number: \(generator.random())")
    // 打印 “Here's a random number: 0.37464991998171”
    print("And here's a random Boolean: \(generator.randomBool())")
    // 打印 “And here's a random Boolean: true”
    
    • 提供默认实现

    可以通过协议扩展来为协议要求的属性、方法以及下标提供默认的实现。如果遵循协议的类型为这些要求提供了自己的实现,那么这些自定义实现将会替代扩展中的默认实现被使用。

    PrettyTextRepresentable 协议继承自 TextRepresentable 协议,可以为其提供一个默认的 prettyTextualDescription 属性,只是简单地返回 textualDescription 属性的值

    extension PrettyTextRepresentable {
        var prettyTextualDescription: String {
            return textualDescription
        }
    }
    
    • 为协议扩展添加限制条件

    在扩展协议的时候,可以指定一些限制条件,只有遵循协议的类型满足这些限制条件时,才能获得协议扩展提供的默认实现。这些限制条件写在协议名之后,使用 where 子句来描述

    你可以扩展 CollectionType 协议,但是只适用于集合中的元素遵循了 TextRepresentable 协议的情况

    extension Collection where Iterator.Element: TextRepresentable {
        var textualDescription: String {
            let itemsAsText = self.map { $0.textualDescription }
            return "[" + itemsAsText.joined(separator: ", ") + "]"
        }
    }
    

    相关文章

      网友评论

        本文标题:Swift-协议

        本文链接:https://www.haomeiwen.com/subject/uxsidqtx.html