FFT 算法

作者: Ggx的代码之旅 | 来源:发表于2016-12-11 10:20 被阅读151次

    FFT即Fast Fourier Transform,中文翻译:快速傅立叶算法。下面是网上找到的算法实现。留以备用。

    /******************************************************************************
     *  Compilation:  javac FFT.java
     *  Execution:    java FFT n
     *  Dependencies: Complex.java
     *
     *  Compute the FFT and inverse FFT of a length n complex sequence.
     *  Bare bones implementation that runs in O(n log n) time. Our goal
     *  is to optimize the clarity of the code, rather than performance.
     *
     *  Limitations
     *  -----------
     *   -  assumes n is a power of 2
     *
     *   -  not the most memory efficient algorithm (because it uses
     *      an object type for representing complex numbers and because
     *      it re-allocates memory for the subarray, instead of doing
     *      in-place or reusing a single temporary array)
     *
     ******************************************************************************/
    
    public class FFT {
    
        // compute the FFT of x[], assuming its length is a power of 2
        public static Complex[] fft(Complex[] x) {
            int n = x.length;
    
            // base case
            if (n == 1) return new Complex[] { x[0] };
    
            // radix 2 Cooley-Tukey FFT
            if (n % 2 != 0) { throw new RuntimeException("n is not a power of 2"); }
    
            // fft of even terms
            Complex[] even = new Complex[n/2];
            for (int k = 0; k < n/2; k++) {
                even[k] = x[2*k];
            }
            Complex[] q = fft(even);
    
            // fft of odd terms
            Complex[] odd  = even;  // reuse the array
            for (int k = 0; k < n/2; k++) {
                odd[k] = x[2*k + 1];
            }
            Complex[] r = fft(odd);
    
            // combine
            Complex[] y = new Complex[n];
            for (int k = 0; k < n/2; k++) {
                double kth = -2 * k * Math.PI / n;
                Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
                y[k]       = q[k].plus(wk.times(r[k]));
                y[k + n/2] = q[k].minus(wk.times(r[k]));
            }
            return y;
        }
    
    
        // compute the inverse FFT of x[], assuming its length is a power of 2
        public static Complex[] ifft(Complex[] x) {
            int n = x.length;
            Complex[] y = new Complex[n];
    
            // take conjugate
            for (int i = 0; i < n; i++) {
                y[i] = x[i].conjugate();
            }
    
            // compute forward FFT
            y = fft(y);
    
            // take conjugate again
            for (int i = 0; i < n; i++) {
                y[i] = y[i].conjugate();
            }
    
            // divide by n
            for (int i = 0; i < n; i++) {
                y[i] = y[i].scale(1.0 / n);
            }
    
            return y;
    
        }
    
        // compute the circular convolution of x and y
        public static Complex[] cconvolve(Complex[] x, Complex[] y) {
    
            // should probably pad x and y with 0s so that they have same length
            // and are powers of 2
            if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); }
    
            int n = x.length;
    
            // compute FFT of each sequence
            Complex[] a = fft(x);
            Complex[] b = fft(y);
    
            // point-wise multiply
            Complex[] c = new Complex[n];
            for (int i = 0; i < n; i++) {
                c[i] = a[i].times(b[i]);
            }
    
            // compute inverse FFT
            return ifft(c);
        }
    
    
        // compute the linear convolution of x and y
        public static Complex[] convolve(Complex[] x, Complex[] y) {
            Complex ZERO = new Complex(0, 0);
    
            Complex[] a = new Complex[2*x.length];
            for (int i = 0;        i <   x.length; i++) a[i] = x[i];
            for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;
    
            Complex[] b = new Complex[2*y.length];
            for (int i = 0;        i <   y.length; i++) b[i] = y[i];
            for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;
    
            return cconvolve(a, b);
        }
    
        // display an array of Complex numbers to standard output
        public static void show(Complex[] x, String title) {
            System.out.println(title);
            System.out.println("-------------------");
            for (int i = 0; i < x.length; i++) {
                System.out.println(x[i]);
            }
            System.out.println();
        }
    
    
        /***************************************************************************
         *  Test client and sample execution
         *
         *  % java FFT 4
         *  x
         *  -------------------
         *  -0.03480425839330703
         *  0.07910192950176387
         *  0.7233322451735928
         *  0.1659819820667019
         *
         *  y = fft(x)
         *  -------------------
         *  0.9336118983487516
         *  -0.7581365035668999 + 0.08688005256493803i
         *  0.44344407521182005
         *  -0.7581365035668999 - 0.08688005256493803i
         *
         *  z = ifft(y)
         *  -------------------
         *  -0.03480425839330703
         *  0.07910192950176387 + 2.6599344570851287E-18i
         *  0.7233322451735928
         *  0.1659819820667019 - 2.6599344570851287E-18i
         *
         *  c = cconvolve(x, x)
         *  -------------------
         *  0.5506798633981853
         *  0.23461407150576394 - 4.033186818023279E-18i
         *  -0.016542951108772352
         *  0.10288019294318276 + 4.033186818023279E-18i
         *
         *  d = convolve(x, x)
         *  -------------------
         *  0.001211336402308083 - 3.122502256758253E-17i
         *  -0.005506167987577068 - 5.058885073636224E-17i
         *  -0.044092969479563274 + 2.1934338938072244E-18i
         *  0.10288019294318276 - 3.6147323062478115E-17i
         *  0.5494685269958772 + 3.122502256758253E-17i
         *  0.240120239493341 + 4.655566391833896E-17i
         *  0.02755001837079092 - 2.1934338938072244E-18i
         *  4.01805098805014E-17i
         *
         ***************************************************************************/
    
        public static void main(String[] args) {
            int n = Integer.parseInt(args[0]);
            Complex[] x = new Complex[n];
    
            // original data
            for (int i = 0; i < n; i++) {
                x[i] = new Complex(i, 0);
                x[i] = new Complex(-2*Math.random() + 1, 0);
            }
            show(x, "x");
    
            // FFT of original data
            Complex[] y = fft(x);
            show(y, "y = fft(x)");
    
            // take inverse FFT
            Complex[] z = ifft(y);
            show(z, "z = ifft(y)");
    
            // circular convolution of x with itself
            Complex[] c = cconvolve(x, x);
            show(c, "c = cconvolve(x, x)");
    
            // linear convolution of x with itself
            Complex[] d = convolve(x, x);
            show(d, "d = convolve(x, x)");
        }
    
    }
    
    /******************************************************************************
     *  Compilation:  javac Complex.java
     *  Execution:    java Complex
     *
     *  Data type for complex numbers.
     *
     *  The data type is "immutable" so once you create and initialize
     *  a Complex object, you cannot change it. The "final" keyword
     *  when declaring re and im enforces this rule, making it a
     *  compile-time error to change the .re or .im instance variables after
     *  they've been initialized.
     *
     *  % java Complex
     *  a            = 5.0 + 6.0i
     *  b            = -3.0 + 4.0i
     *  Re(a)        = 5.0
     *  Im(a)        = 6.0
     *  b + a        = 2.0 + 10.0i
     *  a - b        = 8.0 + 2.0i
     *  a * b        = -39.0 + 2.0i
     *  b * a        = -39.0 + 2.0i
     *  a / b        = 0.36 - 1.52i
     *  (a / b) * b  = 5.0 + 6.0i
     *  conj(a)      = 5.0 - 6.0i
     *  |a|          = 7.810249675906654
     *  tan(a)       = -6.685231390246571E-6 + 1.0000103108981198i
     *
     ******************************************************************************/
    
    import java.util.Objects;
    
    public class Complex {
        private final double re;   // the real part
        private final double im;   // the imaginary part
    
        // create a new object with the given real and imaginary parts
        public Complex(double real, double imag) {
            re = real;
            im = imag;
        }
    
        // return a string representation of the invoking Complex object
        public String toString() {
            if (im == 0) return re + "";
            if (re == 0) return im + "i";
            if (im <  0) return re + " - " + (-im) + "i";
            return re + " + " + im + "i";
        }
    
        // return abs/modulus/magnitude
        public double abs() {
            return Math.hypot(re, im);
        }
    
        // return angle/phase/argument, normalized to be between -pi and pi
        public double phase() {
            return Math.atan2(im, re);
        }
    
        // return a new Complex object whose value is (this + b)
        public Complex plus(Complex b) {
            Complex a = this;             // invoking object
            double real = a.re + b.re;
            double imag = a.im + b.im;
            return new Complex(real, imag);
        }
    
        // return a new Complex object whose value is (this - b)
        public Complex minus(Complex b) {
            Complex a = this;
            double real = a.re - b.re;
            double imag = a.im - b.im;
            return new Complex(real, imag);
        }
    
        // return a new Complex object whose value is (this * b)
        public Complex times(Complex b) {
            Complex a = this;
            double real = a.re * b.re - a.im * b.im;
            double imag = a.re * b.im + a.im * b.re;
            return new Complex(real, imag);
        }
    
        // return a new object whose value is (this * alpha)
        public Complex scale(double alpha) {
            return new Complex(alpha * re, alpha * im);
        }
    
        // return a new Complex object whose value is the conjugate of this
        public Complex conjugate() {
            return new Complex(re, -im);
        }
    
        // return a new Complex object whose value is the reciprocal of this
        public Complex reciprocal() {
            double scale = re*re + im*im;
            return new Complex(re / scale, -im / scale);
        }
    
        // return the real or imaginary part
        public double re() { return re; }
        public double im() { return im; }
    
        // return a / b
        public Complex divides(Complex b) {
            Complex a = this;
            return a.times(b.reciprocal());
        }
    
        // return a new Complex object whose value is the complex exponential of this
        public Complex exp() {
            return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
        }
    
        // return a new Complex object whose value is the complex sine of this
        public Complex sin() {
            return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
        }
    
        // return a new Complex object whose value is the complex cosine of this
        public Complex cos() {
            return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
        }
    
        // return a new Complex object whose value is the complex tangent of this
        public Complex tan() {
            return sin().divides(cos());
        }
    
    
    
        // a static version of plus
        public static Complex plus(Complex a, Complex b) {
            double real = a.re + b.re;
            double imag = a.im + b.im;
            Complex sum = new Complex(real, imag);
            return sum;
        }
    
        // See Section 3.3.
        public boolean equals(Object x) {
            if (x == null) return false;
            if (this.getClass() != x.getClass()) return false;
            Complex that = (Complex) x;
            return (this.re == that.re) && (this.im == that.im);
        }
    
        // See Section 3.3.
        public int hashCode() {
            return Objects.hash(re, im);
        }
    
        // sample client for testing
        public static void main(String[] args) {
            Complex a = new Complex(5.0, 6.0);
            Complex b = new Complex(-3.0, 4.0);
    
            System.out.println("a            = " + a);
            System.out.println("b            = " + b);
            System.out.println("Re(a)        = " + a.re());
            System.out.println("Im(a)        = " + a.im());
            System.out.println("b + a        = " + b.plus(a));
            System.out.println("a - b        = " + a.minus(b));
            System.out.println("a * b        = " + a.times(b));
            System.out.println("b * a        = " + b.times(a));
            System.out.println("a / b        = " + a.divides(b));
            System.out.println("(a / b) * b  = " + a.divides(b).times(b));
            System.out.println("conj(a)      = " + a.conjugate());
            System.out.println("|a|          = " + a.abs());
            System.out.println("tan(a)       = " + a.tan());
        }
    
    }
    
    

    相关文章

      网友评论

        本文标题:FFT 算法

        本文链接:https://www.haomeiwen.com/subject/vbtpmttx.html