项目地址:https://github.com/EnkrateiaLucca/ocr_for_transcribing_pdf_slides
为什么不使用传统的 pdf 转文本工具呢?
Lucas Soares 发现传统工具往往会带来更多的问题,需要花时间解决。他曾经尝试使用传统的 Python 软件包,但是遇到了很多问题(例如必须使用复杂的正则表达式模式解析最终输出等),因此决定尝试使用目标检测和 OCR 来解决。
基本过程可分为以下步骤:
将 pdf 转换为图片;
检测和识别图像中的文本;
展示示例输出。
基于深度学习的 OCR 将 pdf 转录为文本
将 pdf 转换为图像
Soares 使用的 pdf 幻灯片来自于 David Silver 的增强学习(参见以下 pdf 幻灯片地址)。使用「pdf2image」包将每张幻灯片转换为 png 图像格式。
pdf 幻灯片示例。地址:https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
代码如下:
```
from pdf2image import convert_from_path
from pdf2image.exceptions import (
PDFInfoNotInstalledError,
PDFPageCountError,
PDFSyntaxError
)
pdf_path = "path/to/file/intro_RL_Lecture1.pdf"
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
fname = "image" + str(i) + ".png"
image.save(fname, "PNG")
```
经过处理后,所有的 pdf 幻灯片都转换成 png 格式的图像:
检测和识别图像中的文本
为了检测和识别 png 图像中的文本,Soares 使用 ocr.pytorch 库中的文本检测器。按照说明下载模型并将模型保存在 checkpoints 文件夹中。
ocr.pytorch 库地址:https://github.com/courao/ocr.pytorch
代码如下:
```
# adapted from this source: https://github.com/courao/ocr.pytorch
%load_ext autoreload
%autoreload 2
import os
from ocr import ocr
import time
import shutil
import numpy as np
import pathlib
from PIL import Image
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import pytesseract
def single_pic_proc(image_file):
image = np.array(Image.open(image_file).convert('RGB'))
result, image_framed = ocr(image)
return result,image_framed
image_files = glob('./input_images/*.*')
result_dir = './output_images_with_boxes/'
# If the output folder exists we will remove it and redo it.
if os.path.exists(result_dir):
shutil.rmtree(result_dir)
os.mkdir(result_dir)
for image_file in sorted(image_files):
result, image_framed = single_pic_proc(image_file) # detecting and recognizing the text
filename = pathlib.Path(image_file).name
output_file = os.path.join(result_dir, image_file.split('/')[-1])
txt_file = os.path.join(result_dir, image_file.split('/')[-1].split('.')[0]+'.txt')
txt_f = open(txt_file, 'w')
Image.fromarray(image_framed).save(output_file)
for key in result:
txt_f.write(result[key][1]+'\n')
txt_f.close()
```
设置输入和输出文件夹,接着遍历所有输入图像(转换后的 pdf 幻灯片),然后通过 single_pic_proc() 函数运行 OCR 模块中的检测和识别模型,最后将输出保存到输出文件夹。
其中检测继承(inherit)了 Pytorch CTPN 模型,识别继承了 Pytorch CRNN 模型,两者都存在于 OCR 模块中。
示例输出
代码如下:
```
import cv2 as cv
output_dir = pathlib.Path("./output_images_with_boxes")
# image = cv.imread(str(np.random.choice(list(output_dir.iterdir()),1)[0]))
image = cv.imread(f"{output_dir}/image7.png")
size_reshaped = (int(image.shape[1]),int(image.shape[0]))
image = cv.resize(image, size_reshaped)
cv.imshow("image", image)
cv.waitKey(0)
cv.destroyAllWindows()
```
下图左为原始 pdf 幻灯片,图右为转录后的输出文本,转录后的准确率非常高。
文本识别输出如下:
```
filename =f"{output_dir}/image7.txt"
withopen(filename,"r")astext:
forlineintext.readlines():
print(line.strip("\n"))
```
通过上述方法,最终你可以得到一个非常强大的工具来转录各种文档,从检测和识别手写笔记到检测和识别照片中的随机文本。拥有自己的 OCR 工具来处理一些文本内容,这比依赖外部软件来转录文档要好的多。
网友评论