刷股票问题看到的一个大神解答,搬运过来,给大家分享。
作者:labuladong
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/solution/yi-ge-fang-fa-tuan-mie-6-dao-gu-piao-wen-ti-by-l-3/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
下面是正文:
很多读者抱怨股票系列问题奇技淫巧太多,如果面试真的遇到这类问题,基本不会想到那些巧妙的办法,怎么办?所以本文拒绝奇技淫巧,而是稳扎稳打,只用一种通用方法解决所用问题,以不变应万变。
这篇文章用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。
先随便抽出一道题,看看别人的解法:
int maxProfit(vector<int>& prices) {
if(prices.empty()) return 0;
int s1=-prices[0],s2=INT_MIN,s3=INT_MIN,s4=INT_MIN;
for(int i=1;i<prices.size();++i) {
s1 = max(s1, -prices[i]);
s2 = max(s2, s1+prices[i]);
s3 = max(s3, s2-prices[i]);
s4 = max(s4, s3+prices[i]);
}
return max(0,s4);
}
能看懂吧?会做了吗?不可能的,你看不懂,这才正常。就算你勉强看懂了,下一个问题你还是做不出来。为什么别人能写出这么诡异却又高效的解法呢?因为这类问题是有框架的,但是人家不会告诉你的,因为一旦告诉你,你五分钟就学会了,该算法题就不再神秘,变得不堪一击了。
本文就来告诉你这个框架,然后带着你一道一道秒杀。
这 6 道股票买卖问题是有共性的,我们通过对第四题(限制最大交易次数为 k)的分析一道一道解决。因为第四题是一个最泛化的形式,其他的问题都是这个形式的简化。
第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。
一、穷举框架
首先,还是一样的思路:如何穷举?这里的穷举思路和上篇文章递归的思想不太一样。
递归其实是符合我们思考的逻辑的,一步步推进,遇到无法解决的就丢给递归,一不小心就做出来了,可读性还很好。缺点就是一旦出错,你也不容易找到错误出现的原因。比如上篇文章的递归解法,肯定还有计算冗余,但确实不容易找到。
而这里,我们不用递归思想进行穷举,而是利用「状态」进行穷举。我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)
比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。
很复杂对吧,不要怕,我们现在的目的只是穷举,你有再多的状态,老夫要做的就是一把梭全部列举出来。这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:
dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K
n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。
for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)
而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?
我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。读者可能问为什么不是 dp[n - 1][K][1]?因为 [1] 代表手上还持有股票,[0] 表示手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。
记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。
二、状态转移框架
现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。只看「持有状态」,可以画个状态转移图。
状态转移图
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )
解释:今天我没有持有股票,有两种可能:
要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )
解释:今天我持有着股票,有两种可能:
要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。
这个解释应该很清楚了,如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。而且注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。
现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。
dp[-1][k][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0 。
dp[-1][k][1] = -infinity
解释:还没开始的时候,是不可能持有股票的,用负无穷表示这种不可能。
dp[i][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0 。
dp[i][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的,用负无穷表示这种不可能。
把上面的状态转移方程总结一下:
base case:
dp[-1][k][0] = dp[i][0][0] = 0
dp[-1][k][1] = dp[i][0][1] = -infinity
状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
读者可能会问,这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。现在完整的框架已经完成,下面开始具体化。
三、秒杀题目
第一题,k = 1
直接套状态转移方程,根据 base case,可以做一些化简:
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i])
= max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。
现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
直接写出代码:
int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];
显然 i = 0 时 dp[i-1] 是不合法的。这是因为我们没有对 i 的 base case 进行处理。可以这样处理:
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
dp[i][0] = 0;
// 解释:
// dp[i][0]
// = max(dp[-1][0], dp[-1][1] + prices[i])
// = max(0, -infinity + prices[i]) = 0
dp[i][1] = -prices[i];
//解释:
// dp[i][1]
// = max(dp[-1][1], dp[-1][0] - prices[i])
// = max(-infinity, 0 - prices[i])
// = -prices[i]
continue;
}
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];
第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):
// k == 1
int maxProfit_k_1(int[] prices) {
int n = prices.length;
// base case: dp[-1][0] = 0, dp[-1][1] = -infinity
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
// dp[i][1] = max(dp[i-1][1], -prices[i])
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}
两种方式都是一样的,不过这种编程方法简洁很多。但是如果没有前面状态转移方程的引导,是肯定看不懂的。后续的题目,我主要写这种空间复杂度 O(1) 的解法。
第二题,k = +infinity
如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
= max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
直接翻译成代码:
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}
第三题,k = +infinity with cooldown
每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1 。
翻译成代码:
int maxProfit_with_cool(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
int dp_pre_0 = 0; // 代表 dp[i-2][0]
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]);
dp_pre_0 = temp;
}
return dp_i_0;
}
第四题,k = +infinity with fee
每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee)
解释:相当于买入股票的价格升高了。
在第一个式子里减也是一样的,相当于卖出股票的价格减小了。
直接翻译成代码:
int maxProfit_with_fee(int[] prices, int fee) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i] - fee);
}
return dp_i_0;
}
第五题,k = 2
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。
这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。我们直接写代码,边写边分析原因。
原始的动态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
按照之前的代码,我们可能想当然这样写代码(错误的):
int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++)
if (i - 1 == -1) { /* 处理一下 base case*/ }
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];
为什么错误?我这不是照着状态转移方程写的吗?
还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。这道题由于没有消掉 k 的影响,所以必须要对 k 进行穷举:
int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
/* 处理 base case */
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i];
continue;
}
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];
如果你不理解,可以返回第一点「穷举框架」重新阅读体会一下。
这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况手动列举出来也可以:
dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])
int maxProfit_k_2(int[] prices) {
int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
for (int price : prices) {
dp_i20 = Math.max(dp_i20, dp_i21 + price);
dp_i21 = Math.max(dp_i21, dp_i10 - price);
dp_i10 = Math.max(dp_i10, dp_i11 + price);
dp_i11 = Math.max(dp_i11, -price);
}
return dp_i20;
}
有状态转移方程和含义明确的变量名指导,相信你很容易看懂。其实我们可以故弄玄虚,把上述四个变量换成 a, b, c, d。这样当别人看到你的代码时就会一头雾水,大惊失色,不得不对你肃然起敬。
第六题,k = any integer
有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。现在想想,交易次数 k 最多有多大呢?
一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。
直接把之前的代码重用:
int maxProfit_k_any(int max_k, int[] prices) {
int n = prices.length;
if (max_k > n / 2)
return maxProfit_k_inf(prices);
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++)
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) {
/* 处理 base case */
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i];
continue;
}
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][max_k][0];
}
至此,6 道题目通过一个状态转移方程全部解决。
四、最后总结
本文给大家讲了如何通过状态转移的方法解决复杂的问题,用一个状态转移方程秒杀了 6 道股票买卖问题,现在想想,其实也不算难对吧?这已经属于动态规划问题中较困难的了。
关键就在于列举出所有可能的「状态」,然后想想怎么穷举更新这些「状态」。一般用一个多维 dp 数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。想想这个过程,你是不是有点理解「动态规划」这个名词的意义了呢?
具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,无非还是穷举 + 更新,不过我们可以说的高大上一点,这叫「三维 DP」,怕不怕?这个大实话一说,立刻显得你高人一等,名利双收有没有。
所以,大家不要被各种高大上的名词吓到,再多的困难问题,奇技淫巧,也不过是基本套路的不断升级组合产生的。只要把住算法的底层原理,即可举一反三,逐个击破。
网友评论