美文网首页
sklearn(6.13作业)

sklearn(6.13作业)

作者: Pessimist_34ad | 来源:发表于2018-06-19 01:54 被阅读0次

    由于端午...所以这次作业现在才提交...


    作业步骤

    直接上代码

    from sklearn import datasets, metrics
    from sklearn.model_selection import KFold
    from sklearn.naive_bayes import GaussianNB
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier
    import numpy as np
    
    def result_output(y_test, pred):
        print("Accuracy: ", metrics.accuracy_score(y_test, pred))
        try:  
            print("F1-score: ", metrics.f1_score(y_test, pred))
        except:
            print("F1-score Error!")
        try:
            print("AUC ROC ", metrics.roc_auc_score(y_test, pred))
        except ValueError:
            print("ROC AUC score is not defined when only one class present in y_true")
    
    
    # dataset = datasets.load_wine(return_X_y=True)
    dataset = datasets.make_classification(n_samples=2000, n_features=10)
    kf = KFold(n_splits=10)
    k = 0
    for train_index, test_index in kf.split(dataset[0]):
        X_train, X_test = dataset[0][train_index], dataset[0][test_index]
        y_train, y_test = dataset[1][train_index], dataset[1][test_index]
        k += 1
        print("***********************************")
        print("Test %d" % k)
        print("Naive Bayes:")
        clf = GaussianNB()
        clf.fit(X_train, y_train)
        pred = clf.predict(X_test)
        result_output(y_test, pred)
        print("---------------------------")
        print("SVM:")
        clf = SVC(C=1e-2, kernel='rbf', gamma=0.1)
        clf.fit(X_train, y_train)
        pred = clf.predict(X_test)
        result_output(y_test, pred)
        print("---------------------------")
        print("Random Forest:")
        clf = RandomForestClassifier(n_estimators=10)
        clf.fit(X_train, y_train)
        pred = clf.predict(X_test)
        result_output(y_test, pred)
    

    以下是其中的若干次结果:


    Test 1 Test 5 Test 9

    相关文章

      网友评论

          本文标题:sklearn(6.13作业)

          本文链接:https://www.haomeiwen.com/subject/vqvoeftx.html