美文网首页
常用TF方法

常用TF方法

作者: 阿凯被注册了 | 来源:发表于2021-08-05 14:28 被阅读0次

tf.keras.layers.embedding

tf.keras.layers.Embedding(
    input_dim,   # 词汇表维度(总共有多少个不相同的词)
    output_dim,  # 输出Embedding的维度
    embeddings_initializer='uniform', 
    embeddings_regularizer=None, 
    activity_regularizer=None, 
    embeddings_constraint=None, 
    mask_zero=False, 
    input_length=None # 输入语句的长度
)
from tensorflow import tf
import numpy as np

data = np.array([[0,1,2],[3,4,5]])
emb = tf.keras.layers.Embedding(input_dim=6, output_dim=8, input_length=3)
emb_data = emb(data)
$ data
array([[0, 1, 2],
    [3, 4, 5]])

$ data.shape # (batch_size, input_length)
(2, 3)

$ emb_data # 相当于将data中的每个值映射成列数等于output_dim的向量
tf.Tensor(
[[[ 0.04417955  0.03951569 -0.04671072 -0.01689724 -0.0274343
    0.01672404 -0.02383183  0.00011552]
  [-0.04286272 -0.02671162  0.02381554 -0.0092687   0.00082551
   -0.02382222  0.01143166  0.02674634]
  [ 0.01257071 -0.00645797 -0.00185542 -0.02564175  0.01768965
   -0.02935628 -0.01977453  0.02767775]]

 [[-0.04021711 -0.01675881 -0.02166536  0.01848916 -0.02698034
    0.01760058 -0.04472467 -0.02368132]
  [ 0.00224058  0.0078318  -0.00974486 -0.00347499 -0.0094027
    0.01286327 -0.03330473 -0.04883292]
  [-0.03280728 -0.03111702 -0.01845707  0.02144312 -0.00158714
    0.02110559 -0.01083742  0.04108325]]], shape=(2, 3, 8), dtype=float32)

$ emb_data.shape # (batch_size, input_length, output_dim)
TensorShape([2, 3, 8])

tf.keras.layers.Input

tf.keras.layers.Input(
    shape=None, # shape=(32,) 预期的输入将是一批32维的向量
    batch_shape=None, # batch_shape=(10,32) 表示预期的输入将是10个32维向量的批次
    name=None, 
    dtype=K.floatx(), # 预期的输入数据类型
    sparse=False,
    tensor=None
)
input = tf.keras.layers.Input(shape=(32,)) # 网络的输入层

$ input 
<KerasTensor: shape=(None, 32) dtype=float32 (created by layer 'input_3')>

tf.keras.layers.Dense

tf.keras.layers.Dense(
    units, # 输出向量维度
    activation=None, # 激活函数 None就是线性激活a(x)=x
    use_bias=True, # Boolean, 是否使用偏置向量
    kernel_initializer='glorot_uniform', # 权重矩阵的初始化器
    bias_initializer='zeros',  # 偏置向量的初始化器
    kernel_regularizer=None, # 权重矩阵的正则化函数
    bias_regularizer=None, # 偏置向量的正则化函数
    activity_regularizer=None, 
    kernel_constraint=None, # 权重矩阵的约束函数
    bias_constraint=None, # 偏置向量的约束函数
    **kwargs
)

输入: (batch_size, input_dim)
执行: output = activation(dot(input, kernel) + bias) 
    kernel: 是由网络层创建的权值矩阵
输出: (batch_size, units)
model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(128,)))
model.add(tf.keras.layers.Dense(16, activation='relu'))

$ model.input_shape
(None, 128)

$ model.output_shape
(None, 16)

tf.keras.layers.Activation

tf.keras.layers.Activation(
    activation, **kwargs
)
layer = tf.keras.layers.Activation('relu') # tf.nn.relu
output = layer([-3.0, -1.0, 0.0, 2.0])
$ list(output.numpy())
[0.0, 0.0, 0.0, 2.0]

layer = tf.keras.layers.Activation(tf.nn.sigmoid)
output = layer([-3.0, -1.0, 0.0, 2.0])
$ list(output.numpy())
[0.047425866, 0.26894143, 0.5, 0.8807971]

tf.keras.layers.BatchNormalization

tf.keras.layers.BatchNormalization(
    axis=-1, # 按照input的哪一个维度进行BN
    momentum=0.99, # 计算均值与方差的滑动平均时使用的参数
    epsilon=0.001, 
    center=True,  # beta 是否进行平移
    scale=True, # gamma 是否进行缩放
    beta_initializer='zeros', # beta weight 初始化
    gamma_initializer='ones', # gamma weight 初始化
    moving_mean_initializer='zeros', 
    moving_variance_initializer='ones', # 可见初始的均值与方差是标准正态分布的均值与方差
    beta_regularizer=None, # beta weight 正则 一般不用
    gamma_regularizer=None, # gamma weight 正则 一般不用
    beta_constraint=None, # beta weight 约束 一般不用
    gamma_constraint=None, # gamma weight 约束 一般不用
    **kwargs
)

# call arguments
inputs: 
training: boolean indicating whether the layer should behave in training mode or in inference mode. 
    training=True: The layer will normalize its inputs using the mean and variance of       the current batch of inputs.
    training=False: The layer will normalize its inputs using the mean and variance of      its moving statistics, learned during training.
model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(32,)))
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.9))

tf.keras.layers.Dropout

tf.keras.layers.Dropout(
    rate, # 丢弃比例
    noise_shape=None, 
    seed=None, 
    **kwargs
)
tf.random.set_seed(0)
layer = tf.keras.layers.Dropout(.2, input_shape=(2,))
data = np.arange(10).reshape(5, 2).astype(np.float32)
$ data
array([[0., 1.],
       [2., 3.],
       [4., 5.],
       [6., 7.],
       [8., 9.]], dtype=float32)

outputs = layer(data, training=True)
$ outputs
<tf.Tensor: shape=(5, 2), dtype=float32, numpy=
array([[ 0.  ,  1.25],
       [ 2.5 ,  3.75],
       [ 5.  ,  6.25],
       [ 7.5 ,  8.75],
       [10.  ,  0.  ]], dtype=float32)>

tf.keras.layers.add

tf.keras.layers.Add(
    **kwargs
)
input_shape = (2, 3, 4)
x1 = tf.random.normal(input_shape)
x2 = tf.random.normal(input_shape)
y = tf.keras.layers.Add()([x1, x2])

$ x1, x2
(<tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
 array([[[ 0.8328295 ,  0.76248366, -0.30527893, -0.753745  ],
         [ 0.2836065 ,  1.0222927 ,  0.34153125, -1.3051203 ],
         [ 0.49992284,  0.2483008 , -0.4567157 ,  0.9952715 ]],
 
        [[-1.9321301 ,  0.6314686 , -0.9774864 ,  1.425028  ],
         [ 0.6635869 , -2.0512059 , -1.098715  , -0.76539195],
         [-1.9133846 , -0.75865966,  0.9069262 ,  2.8084674 ]]],
       dtype=float32)>,
 <tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
 array([[[ 1.3492554 ,  0.47617865,  0.9979069 ,  2.502786  ],
         [-0.74634784, -0.79241073, -0.08082506, -0.548672  ],
         [ 0.5416235 ,  0.4636011 ,  0.17938277, -0.8119523 ]],
 
        [[-2.0378642 , -0.29241782,  0.666593  ,  0.3068891 ],
         [-2.027362  ,  0.8497227 , -0.19519807, -0.8135654 ],
         [ 0.61839324,  1.8079637 ,  0.03657307, -1.0492609 ]]],
       dtype=float32)>)
      
$ y 
<tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
array([[[ 2.182085  ,  1.2386622 ,  0.692628  ,  1.7490408 ],
        [-0.46274135,  0.229882  ,  0.2607062 , -1.8537924 ],
        [ 1.0415463 ,  0.7119019 , -0.27733293,  0.18331921]],

       [[-3.9699943 ,  0.33905077, -0.31089336,  1.731917  ],
        [-1.3637753 , -1.2014832 , -1.293913  , -1.5789573 ],
        [-1.2949913 ,  1.049304  ,  0.94349927,  1.7592065 ]]],
      dtype=float32)>

tf.keras.layers.Reshape

tf.keras.layers.Reshape(
    target_shape, 
    **kwargs
)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Reshape((3, 4), input_shape=(12,)))
$ model.output_shape
(None, 3, 4) # None是batch_size大小

tf.keras.models.Model

tf.keras.Model(
    *args, 
    **kwargs
)

inputs: 模型输入(一个或多个),keras.Input对象
outputs: 模型输出
name: 模型名称
# 1. 使用“功能性API”从input处开始
inputs = tf.keras.Input(shape=(3,))
layer1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)  # weight.shape = (3, 4)
output1_tensor = layer1(inputs)
layer2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) # weight.shape = (4, 5)
output2_tensor = layer2(output1_tensor)
model = tf.keras.Model(inputs=inputs, outputs=output2_tensor)

$ layer1.get_weights(), layer2.get_weights()
([array([[ 0.1579181 , -0.91244614,  0.29514194, -0.61988306],
         [ 0.6677849 , -0.05998987, -0.16426378,  0.6446078 ],
         [ 0.39074814, -0.16210169, -0.68291634,  0.7450665 ]],
        dtype=float32),
  array([0., 0., 0., 0.], dtype=float32)],
 [array([[ 0.08803588,  0.34079218,  0.19313765, -0.04077142, -0.23308784],
         [ 0.2253282 , -0.2840523 ,  0.15559089,  0.41640854,  0.13909006],
         [ 0.0896551 , -0.46805245,  0.7265818 ,  0.45355165, -0.701867  ],
         [-0.63146317,  0.3386103 ,  0.5843165 , -0.43221   ,  0.41194856]],
        dtype=float32),
  array([0., 0., 0., 0., 0.], dtype=float32)])
# 2. 通过继承Model类,在这种情况下,应在__init__中定义图层,并在call中实现模型的前向传递
class MyModel(tf.keras.Model):
    def __init__(self): # 定义图层
        super(MyModel, self).__init__()
        self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)

    def call(self, inputs): # 模型的前向传递
        x = self.dense1(inputs)
        return self.dense2(x)

model = MyModel()
# 如果将Model子类化,则可以在call中加一个training参数,用于在训练和推理中指定其他行为
class MyModel(tf.keras.Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
        self.dropout = tf.keras.layers.Dropout(0.5)

    def call(self, inputs, training=False):
        x = self.dense1(inputs)
        if training:
            x = self.dropout(x, training=training)
        return self.dense2(x)

model = MyModel()
inputs = tf.keras.layers.Input(shape=(3,))
outputs = tf.keras.layers.Dense(1)(inputs)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer="Adam", loss="mse", metrics=["mae"]) # 配置损失和指标
x = np.random.random((4, 3))
y = np.random.randint(0, 2, 4)
model.fit(x, y) # 训练模型
$ model.metrics_names
['loss', 'mae']

$ x, y, output
(array([[0.50672765, 0.63972061, 0.69257209],
        [0.04628472, 0.14436413, 0.35030561],
        [0.60128111, 0.32340873, 0.48343087],
        [0.20454429, 0.71204994, 0.04399014]]),
 array([0, 1, 0, 1]),
 <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0.04742587, 0.26894143, 0.5       , 0.8807971 ], dtype=float32)>)

$ model.predict(x) # 模型预测
array([[ 0.4953674 ],
       [ 0.18611424],
       [ 0.5847541 ],
       [-0.17252052]], dtype=float32)

tf.keras.layers.Concatenate

tf.keras.layers.concatenate(
    inputs, 
    axis=-1,
    **kwargs
)
x = np.arange(20).reshape(2, 2, 5)
y = np.arange(20, 30).reshape(2, 1, 5)
$ tf.keras.layers.concatenate([x, y], axis=1)
<tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy=
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [20, 21, 22, 23, 24]],

       [[10, 11, 12, 13, 14],
        [15, 16, 17, 18, 19],
        [25, 26, 27, 28, 29]]])>

tf.keras.layers.Flatten

tf.keras.layers.Flatten(
    data_format=None,
    **kwargs
)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, 3, 3, input_shape=(3, 32, 32)))
$ model.output_shape
(None, 1, 10, 64)
model.add(tf.keras.layers.Flatten())
$ model.output_shape
(None, 640)

相关文章

网友评论

      本文标题:常用TF方法

      本文链接:https://www.haomeiwen.com/subject/vtmmvltx.html