美文网首页
(八)sequence to sequence —3

(八)sequence to sequence —3

作者: 天生smile | 来源:发表于2018-12-12 16:18 被阅读0次

    实现beam_search部分

    基于tensorflow1.4 Seq2seq的实现

    import helpers
    import tensorflow as tf
    from tensorflow.python.util import nest
    from tensorflow.contrib import seq2seq,rnn
    
    tf.__version__
    
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    
    PAD = 0
    EOS = 1
    
    
    vocab_size = 10
    input_embedding_size = 20
    encoder_hidden_units = 25
    
    decoder_hidden_units = encoder_hidden_units
    
    import helpers as data_helpers
    batch_size = 10
    
    # 一个generator,每次产生一个minibatch的随机样本
    
    batches = data_helpers.random_sequences(length_from=3, length_to=8,
                                       vocab_lower=2, vocab_upper=10,
                                       batch_size=batch_size)
    
    print('产生%d个长度不一(最短3,最长8)的sequences, 其中前十个是:' % batch_size)
    for seq in next(batches)[:min(batch_size, 10)]:
        print(seq)
        
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    mode = tf.contrib.learn.ModeKeys.TRAIN
    
    产生10个长度不一(最短3,最长8)的sequences, 其中前十个是:
    [8, 2, 7, 2]
    [6, 7, 9, 2, 5, 3]
    [3, 7, 5, 3, 2, 3, 4]
    [7, 4, 6, 4, 2]
    [9, 5, 5, 5, 7, 8]
    [8, 7, 7, 6, 8, 6, 2]
    [9, 6, 3, 5, 3, 8, 5, 4]
    [7, 8, 4, 8]
    [7, 8, 7, 5, 4]
    [4, 7, 9, 4, 2, 7]
    

    1.使用seq2seq库实现seq2seq模型

    1. 计算图的数据的placeholder

    with tf.name_scope('minibatch'):
        encoder_inputs = tf.placeholder(tf.int32, [None, None], name='encoder_inputs')
        
        encoder_inputs_length = tf.placeholder(tf.int32, [None], name='encoder_inputs_length')
        
        decoder_targets = tf.placeholder(tf.int32, [None, None], name='decoder_targets')
        
        decoder_inputs = tf.placeholder(shape=(None, None),dtype=tf.int32,name='decoder_inputs')
        
        #decoder_inputs_length和decoder_targets_length是一样的
        decoder_inputs_length = tf.placeholder(shape=(None,),
                                                dtype=tf.int32,
                                                name='decoder_inputs_length')
    
    def _create_rnn_cell():
        def single_rnn_cell(encoder_hidden_units):
            # 创建单个cell,这里需要注意的是一定要使用一个single_rnn_cell的函数,不然直接把cell放在MultiRNNCell
            # 的列表中最终模型会发生错误
            single_cell = rnn.LSTMCell(encoder_hidden_units)
            #添加dropout
            single_cell = rnn.DropoutWrapper(single_cell, output_keep_prob=0.5)
            return single_cell
                #列表中每个元素都是调用single_rnn_cell函数
                #cell = rnn.MultiRNNCell([single_rnn_cell() for _ in range(self.num_layers)])
        cell = rnn.MultiRNNCell([single_rnn_cell(encoder_hidden_units) for _ in range(1)])
        return cell 
    

    2.定义encoder 部分

    with tf.variable_scope('encoder'):
        # 创建LSTMCell
        encoder_cell = _create_rnn_cell()
        # 构建embedding矩阵,encoder和decoder公用该词向量矩阵
        embedding = tf.get_variable('embedding', [vocab_size,input_embedding_size])
        encoder_inputs_embedded = tf.nn.embedding_lookup(embedding,encoder_inputs)
        # 使用dynamic_rnn构建LSTM模型,将输入编码成隐层向量。
        # encoder_outputs用于attention,batch_size*encoder_inputs_length*rnn_size,
        # encoder_state用于decoder的初始化状态,batch_size*rnn_szie
        encoder_outputs, encoder_state = tf.nn.dynamic_rnn(encoder_cell, encoder_inputs_embedded,
                                                           sequence_length=encoder_inputs_length,
                                                           dtype=tf.float32)
    

    3.定义decoder 部分(训练阶段)

    with tf.variable_scope('decoder'):
        decoder_cell = _create_rnn_cell()
        
        #定义decoder的初始状态
        decoder_initial_state = encoder_state
        
        #定义output_layer
        output_layer = tf.layers.Dense(vocab_size,kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1))
        
        decoder_inputs_embedded = tf.nn.embedding_lookup(embedding, decoder_inputs)
        
        # 训练阶段,使用TrainingHelper+BasicDecoder的组合,这一般是固定的,当然也可以自己定义Helper类,实现自己的功能
        training_helper = seq2seq.TrainingHelper(inputs=decoder_inputs_embedded,
                                                            sequence_length=decoder_inputs_length,
                                                            time_major=False, name='training_helper')
        training_decoder = seq2seq.BasicDecoder(cell=decoder_cell, helper=training_helper,
                                                           initial_state=decoder_initial_state,
                                                           output_layer=output_layer)
        
        # 调用dynamic_decode进行解码,decoder_outputs是一个namedtuple,里面包含两项(rnn_outputs, sample_id)
        # rnn_output: [batch_size, decoder_targets_length, vocab_size],保存decode每个时刻每个单词的概率,可以用来计算loss
        # sample_id: [batch_size], tf.int32,保存最终的编码结果。可以表示最后的答案
        max_target_sequence_length = tf.reduce_max(decoder_inputs_length, name='max_target_len')
        decoder_outputs, _, _ = seq2seq.dynamic_decode(decoder=training_decoder,
                                                              impute_finished=True,
                                                              maximum_iterations=max_target_sequence_length)
        decoder_logits_train = tf.identity(decoder_outputs.rnn_output)
        sample_id = decoder_outputs.sample_id
        max_target_sequence_length = tf.reduce_max(decoder_inputs_length, name='max_target_len')
        mask = tf.sequence_mask(decoder_inputs_length,max_target_sequence_length, dtype=tf.float32, name='masks')
        print('\t%s' % repr(decoder_logits_train))
        print('\t%s' % repr(decoder_targets))
        print('\t%s' % repr(sample_id))
        loss = seq2seq.sequence_loss(logits=decoder_logits_train,targets=decoder_targets, weights=mask)
    
        <tf.Tensor 'decoder/Identity:0' shape=(?, ?, 10) dtype=float32>
        <tf.Tensor 'minibatch/decoder_targets:0' shape=(?, ?) dtype=int32>
        <tf.Tensor 'decoder/decoder/transpose_1:0' shape=(?, ?) dtype=int32>
    

    3.定义decoder 部分(测试阶段)

    beam_search.png
    with tf.variable_scope('decoder',reuse=True):
        start_tokens = tf.ones([batch_size, ], tf.int32)*1  #[batch_size]  数值为1
        encoder_state = nest.map_structure(lambda s: seq2seq.tile_batch(s, 3),
                                                       encoder_state)
        inference_decoder = tf.contrib.seq2seq.BeamSearchDecoder(cell=decoder_cell, embedding=embedding,
                                                                                 start_tokens=start_tokens,
                                                                                 end_token=1,
                                                                                 initial_state=encoder_state,
                                                                                 beam_width=3,
                                                                                 output_layer=output_layer)
        beam_decoder_outputs, _, _ = seq2seq.dynamic_decode(decoder=inference_decoder,maximum_iterations=10)
        
    
    train_op = tf.train.AdamOptimizer(learning_rate = 0.001).minimize(loss)
    sess.run(tf.global_variables_initializer())
    def next_feed():
        batch = next(batches)
        
        encoder_inputs_, encoder_inputs_length_ = data_helpers.batch(batch)
        decoder_targets_, decoder_targets_length_ = data_helpers.batch(
            [(sequence) + [EOS] for sequence in batch]
        )
        decoder_inputs_, decoder_inputs_length_ = data_helpers.batch(
            [[EOS] + (sequence) for sequence in batch]
        )
        
        # 在feedDict里面,key可以是一个Tensor
        return {
            encoder_inputs: encoder_inputs_.T,
            decoder_inputs: decoder_inputs_.T,
            decoder_targets: decoder_targets_.T,
            encoder_inputs_length: encoder_inputs_length_,
            decoder_inputs_length: decoder_inputs_length_
        }
    
    x = next_feed()
    print('encoder_inputs:')
    print(x[encoder_inputs][0,:])
    print('encoder_inputs_length:')
    print(x[encoder_inputs_length][0])
    print('decoder_inputs:')
    print(x[decoder_inputs][0,:])
    print('decoder_inputs_length:')
    print(x[decoder_inputs_length][0])
    print('decoder_targets:')
    print(x[decoder_targets][0,:])
    
    encoder_inputs:
    [6 9 9 3 4 7 0 0]
    encoder_inputs_length:
    6
    decoder_inputs:
    [1 6 9 9 3 4 7 0 0]
    decoder_inputs_length:
    7
    decoder_targets:
    [6 9 9 3 4 7 1 0 0]
    
    loss_track = []
    max_batches = 6001
    batches_in_epoch = 200
    
    try:
        # 一个epoch的learning
        for batch in range(max_batches):
            fd = next_feed()
            _, l = sess.run([train_op, loss], fd)
            loss_track.append(l)
            
            if batch == 0 or batch % batches_in_epoch == 0:
                print('batch {}'.format(batch))
                print('  minibatch loss: {}'.format(sess.run(loss, fd)))
                predict_ = sess.run(beam_decoder_outputs.predicted_ids, fd)
                #print(predict_)
                for i, (inp, pred) in enumerate(zip(fd[encoder_inputs], predict_)):
                    print('  sample {}:'.format(i + 1))
                    print('    input     > {}'.format(inp))
                    print('    predicted > {}'.format(pred))
                    if i >= 2:
                        break
                print()
            
    except KeyboardInterrupt:
        print('training interrupted')
    
    batch 0
      minibatch loss: 0.32762354612350464
      sample 1:
        input     > [2 8 9 4 6 3 5 0]
        predicted > [[ 2  2  2]
     [ 8  8  8]
     [ 9  9  9]
     [ 4  4  4]
     [ 6  6  6]
     [ 3  5  9]
     [ 5  3  3]
     [ 1  1  1]
     [-1 -1 -1]]
      sample 2:
        input     > [2 5 4 2 6 0 0 0]
        predicted > [[ 2  2  2]
     [ 5  3  5]
     [ 4  4  2]
     [ 2  5  4]
     [ 6  9  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [5 8 3 0 0 0 0 0]
        predicted > [[ 5  5  5]
     [ 8  3  2]
     [ 3  8  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 200
      minibatch loss: 0.23138172924518585
      sample 1:
        input     > [4 9 2 0 0 0 0 0]
        predicted > [[ 4  4  4]
     [ 9  9  9]
     [ 2  7  9]
     [ 1  2  1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [7 7 6 5 2 4 9 3]
        predicted > [[7 7 7]
     [7 7 7]
     [6 6 6]
     [5 5 2]
     [4 2 5]
     [2 4 9]
     [3 9 4]
     [9 3 5]
     [1 1 1]]
      sample 3:
        input     > [4 9 3 3 7 0 0 0]
        predicted > [[ 4  4  4]
     [ 9  9  9]
     [ 3  3  3]
     [ 3  7  3]
     [ 7  3  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 400
      minibatch loss: 0.21507926285266876
      sample 1:
        input     > [7 7 8 7 2 2 3]
        predicted > [[7 7 7]
     [7 7 7]
     [8 8 8]
     [4 7 2]
     [7 2 7]
     [3 2 7]
     [2 3 5]
     [1 1 1]]
      sample 2:
        input     > [2 7 9 6 0 0 0]
        predicted > [[ 2  2  2]
     [ 7  7  9]
     [ 9  6  7]
     [ 6  9  6]
     [ 1  9  1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 8 2 0 0 0 0]
        predicted > [[ 2  8  8]
     [ 8  2  8]
     [ 2  2  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 600
      minibatch loss: 0.3271256387233734
      sample 1:
        input     > [2 9 9 3 9 8 5 0]
        predicted > [[ 9  7  9]
     [ 2  8  2]
     [ 2  4  2]
     [ 3  5  7]
     [ 9  2  5]
     [ 9  9  9]
     [ 7  5  3]
     [ 1  1  9]
     [-1 -1  1]]
      sample 2:
        input     > [8 4 7 5 4 0 0 0]
        predicted > [[ 8  8  8]
     [ 4  2  2]
     [ 7  7  7]
     [ 5  4  4]
     [ 4  6  5]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [4 6 9 8 8 7 0 0]
        predicted > [[ 4  4  4]
     [ 6  9  9]
     [ 9  6  6]
     [ 8  8  8]
     [ 8  8  8]
     [ 7  3  6]
     [ 1  6  1]
     [-1  1 -1]
     [-1 -1 -1]]
    
    batch 800
      minibatch loss: 0.3914913535118103
      sample 1:
        input     > [3 5 5 9 0 0 0]
        predicted > [[ 3  5  3]
     [ 5  3  5]
     [ 5  3  5]
     [ 9  9  7]
     [ 1  1  9]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [4 5 4 8 4 5 2]
        predicted > [[4 4 4]
     [4 4 5]
     [5 5 4]
     [5 5 8]
     [8 8 4]
     [8 4 5]
     [4 8 2]
     [1 1 1]]
      sample 3:
        input     > [9 4 7 5 6 5 0]
        predicted > [[ 9  5  5]
     [ 4  4  4]
     [ 7  7  7]
     [ 5  9  9]
     [ 6  7  9]
     [ 1  9  7]
     [-1  1  1]
     [-1 -1 -1]]
    
    batch 1000
      minibatch loss: 0.2255089282989502
      sample 1:
        input     > [2 3 9 0 0 0 0 0]
        predicted > [[ 2  8  2]
     [ 3  3  3]
     [ 9  2  7]
     [ 1  4  1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [5 9 8 0 0 0 0 0]
        predicted > [[ 5  5  5]
     [ 9  8  8]
     [ 8  9  9]
     [ 1  9  1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [4 7 7 9 0 0 0 0]
        predicted > [[ 4  4  4]
     [ 7  7  9]
     [ 7  9  7]
     [ 9  7  7]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 1200
      minibatch loss: 0.3723776340484619
      sample 1:
        input     > [8 2 6 8 6 0 0 0]
        predicted > [[ 8  8  8]
     [ 2  2  4]
     [ 6  6  8]
     [ 8  8  5]
     [ 6  1  8]
     [ 1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [4 6 3 7 6 6 6 0]
        predicted > [[ 4  4  4]
     [ 6  6  6]
     [ 3  3  3]
     [ 7  6  6]
     [ 6  7  7]
     [ 6  7  6]
     [ 1  6  9]
     [-1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [9 7 5 4 5 0 0 0]
        predicted > [[ 9  9  9]
     [ 7  7  7]
     [ 5  2  2]
     [ 4  9  9]
     [ 5  5  5]
     [ 1  1  6]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 1400
      minibatch loss: 0.2460956871509552
      sample 1:
        input     > [2 6 2 0 0 0 0]
        predicted > [[ 2  8  5]
     [ 6  2  8]
     [ 2  5  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [2 8 4 8 4 3 0]
        predicted > [[ 2  2  2]
     [ 4  8  4]
     [ 8  4  8]
     [ 8  8  8]
     [ 8  4  2]
     [ 3  3  3]
     [ 1  1  8]
     [-1 -1  1]
     [-1 -1 -1]]
      sample 3:
        input     > [3 6 2 8 3 6 5]
        predicted > [[ 3  3  3]
     [ 6  6  6]
     [ 2  8  8]
     [ 8  3  2]
     [ 5  2  5]
     [ 3  5  3]
     [ 6  4  6]
     [ 1  1  1]
     [-1 -1 -1]]
    
    batch 1600
      minibatch loss: 0.21721991896629333
      sample 1:
        input     > [2 4 7 5 3 0 0]
        predicted > [[ 2  2  2]
     [ 4  7  7]
     [ 7  4  4]
     [ 5  5  5]
     [ 3  4  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [9 5 2 6 3 8 7]
        predicted > [[5 5 5]
     [9 9 9]
     [8 8 8]
     [2 2 7]
     [7 7 5]
     [7 5 2]
     [5 7 2]
     [1 1 1]]
      sample 3:
        input     > [4 2 7 8 0 0 0]
        predicted > [[ 4  2  8]
     [ 2  4  4]
     [ 8  7  7]
     [ 7  3  2]
     [ 1  1  4]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 1800
      minibatch loss: 0.2289828509092331
      sample 1:
        input     > [8 8 2 0 0 0 0]
        predicted > [[ 8  8  2]
     [ 8  2  8]
     [ 2  8  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [9 8 4 0 0 0 0]
        predicted > [[ 9  8  9]
     [ 8  9  9]
     [ 4  9  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 2 4 5 0 0 0]
        predicted > [[ 2  2  2]
     [ 2  2  2]
     [ 4  9  9]
     [ 5  4  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 2000
      minibatch loss: 0.35617268085479736
      sample 1:
        input     > [6 9 2 4 0 0 0 0]
        predicted > [[ 6  6  9]
     [ 9  9  6]
     [ 2  4  4]
     [ 4  2  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [3 7 8 8 5 7 2 0]
        predicted > [[ 3  3  3]
     [ 7  7  8]
     [ 8  8  7]
     [ 8  8  7]
     [ 2  2  5]
     [ 7  7  2]
     [ 9  5  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 6 9 0 0 0 0 0]
        predicted > [[ 2  2  2]
     [ 6  7  8]
     [ 9  6  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 2200
      minibatch loss: 0.44849294424057007
      sample 1:
        input     > [3 7 5 6 7 9 0 0]
        predicted > [[ 3  3  3]
     [ 7  7  7]
     [ 6  5  6]
     [ 5  6  5]
     [ 9  7  7]
     [ 7  9  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [6 8 8 0 0 0 0 0]
        predicted > [[ 8  6  8]
     [ 6  8  6]
     [ 6  8  5]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [7 6 6 7 2 6 3 2]
        predicted > [[ 6  6  6]
     [ 7  7  7]
     [ 7  7  6]
     [ 7  7  7]
     [ 6  6  7]
     [ 2  2  2]
     [ 2  5  8]
     [ 6  8  4]
     [ 1  1  1]
     [-1 -1 -1]]
    
    batch 2400
      minibatch loss: 0.16510817408561707
      sample 1:
        input     > [4 3 9 2 4 8 9]
        predicted > [[4 4 4]
     [3 3 3]
     [5 5 9]
     [9 9 2]
     [7 9 4]
     [8 7 8]
     [4 2 6]
     [2 8 5]
     [1 1 1]]
      sample 2:
        input     > [4 2 5 0 0 0 0]
        predicted > [[ 2  4  4]
     [ 4  2  2]
     [ 5  5  2]
     [ 1  1  6]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 6 2 9 0 0 0]
        predicted > [[ 2  2  2]
     [ 6  6  8]
     [ 2  2  5]
     [ 9  7  6]
     [ 1  5  1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 2600
      minibatch loss: 0.18280677497386932
      sample 1:
        input     > [9 4 9 0 0 0 0 0]
        predicted > [[ 9  9  6]
     [ 4  9  9]
     [ 9  4  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [3 5 2 6 4 6 0 0]
        predicted > [[ 3  3  5]
     [ 5  5  3]
     [ 6  6  7]
     [ 2  2  2]
     [ 4  2  6]
     [ 2  4  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [8 5 9 4 2 0 0 0]
        predicted > [[ 8  8  8]
     [ 5  5  9]
     [ 9  9  5]
     [ 4  4  4]
     [ 2  8  3]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 2800
      minibatch loss: 0.32199400663375854
      sample 1:
        input     > [7 2 6 3 6 0 0 0]
        predicted > [[ 7  7  7]
     [ 2  2  3]
     [ 6  6  8]
     [ 3  6  4]
     [ 6  3  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [6 7 3 9 0 0 0 0]
        predicted > [[ 7  6  7]
     [ 6  7  6]
     [ 1  3  8]
     [-1  9  3]
     [-1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [4 3 8 7 7 3 0 0]
        predicted > [[ 4  4  4]
     [ 3  3  3]
     [ 8  8  8]
     [ 7  9  7]
     [ 7  7  3]
     [ 3  3  7]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 3000
      minibatch loss: 0.48668527603149414
      sample 1:
        input     > [3 7 2 2 4 0 0 0]
        predicted > [[ 3  2  2]
     [ 7  7  7]
     [ 2  3  3]
     [ 2  3  3]
     [ 4  6  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [2 7 4 4 2 3 9 0]
        predicted > [[ 2  2  2]
     [ 7  7  4]
     [ 4  4  7]
     [ 4  4  2]
     [ 2  2  7]
     [ 3  3  4]
     [ 9  4  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [5 5 8 4 3 7 6 0]
        predicted > [[ 5  5  5]
     [ 5  5  5]
     [ 8  8  8]
     [ 4  4  4]
     [ 3  3  7]
     [ 7  9  3]
     [ 6  6  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 3200
      minibatch loss: 0.2466438114643097
      sample 1:
        input     > [4 9 6 9 8 6 0]
        predicted > [[ 4  4  4]
     [ 9  9  9]
     [ 6  8  6]
     [ 9  5  8]
     [ 8  6  9]
     [ 6  6  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [7 4 8 9 5 2 6]
        predicted > [[ 7  7  7]
     [ 4  4  4]
     [ 8  8  8]
     [ 9  9  9]
     [ 5  5  5]
     [ 2  5  5]
     [ 6  2  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [8 3 4 4 8 5 0]
        predicted > [[ 8  8  8]
     [ 3  3  7]
     [ 4  4  5]
     [ 4  4  3]
     [ 8  9  4]
     [ 5  6  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 3400
      minibatch loss: 0.2961788773536682
      sample 1:
        input     > [4 3 8 0 0 0 0 0]
        predicted > [[ 4  4  4]
     [ 3  3  7]
     [ 8  2  8]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [4 6 2 0 0 0 0 0]
        predicted > [[ 4  6  4]
     [ 6  4  4]
     [ 2  2  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [7 6 5 9 7 8 3 0]
        predicted > [[ 7  7  7]
     [ 6  6  6]
     [ 5  5  5]
     [ 8  9  8]
     [ 7  7  7]
     [ 9  8  9]
     [ 9  3  7]
     [ 1  1  1]
     [-1 -1 -1]]
    
    batch 3600
      minibatch loss: 0.3043099641799927
      sample 1:
        input     > [7 7 2 3 4 4 3 9]
        predicted > [[7 7 7]
     [7 7 7]
     [2 2 2]
     [4 4 4]
     [3 3 3]
     [3 5 9]
     [9 7 3]
     [4 8 4]
     [1 1 1]]
      sample 2:
        input     > [7 2 5 9 0 0 0 0]
        predicted > [[ 7  7  7]
     [ 2  5  8]
     [ 5  2  5]
     [ 9  9  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [6 3 5 0 0 0 0 0]
        predicted > [[ 6  6  6]
     [ 3  3  3]
     [ 5  9  1]
     [ 1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 3800
      minibatch loss: 0.26044222712516785
      sample 1:
        input     > [8 8 5 0 0 0 0 0]
        predicted > [[ 8  8  2]
     [ 8  8  8]
     [ 5  2  7]
     [ 1  1  8]
     [-1 -1  6]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [6 6 8 2 9 0 0 0]
        predicted > [[ 6  6  6]
     [ 6  6  8]
     [ 8  8  6]
     [ 2  8  4]
     [ 9  5  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [4 5 7 2 4 0 0 0]
        predicted > [[ 4  4  4]
     [ 5  5  5]
     [ 7  7  7]
     [ 2  2  2]
     [ 4  2  2]
     [ 1  1  9]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 4000
      minibatch loss: 0.3985794484615326
      sample 1:
        input     > [9 5 9 0 0 0 0 0]
        predicted > [[ 5  9  9]
     [ 9  9  5]
     [ 9  5  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [8 5 3 6 8 6 0 0]
        predicted > [[ 5  5  5]
     [ 8  8  8]
     [ 8  8  8]
     [ 3  3  3]
     [ 6  6  6]
     [ 7  7  6]
     [ 1  3  1]
     [-1  1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 5 4 0 0 0 0 0]
        predicted > [[ 2  2  2]
     [ 5  2  6]
     [ 4  6  4]
     [ 1  1  5]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 4200
      minibatch loss: 0.29730188846588135
      sample 1:
        input     > [8 3 9 9 7 0 0]
        predicted > [[ 8  8  8]
     [ 3  3  3]
     [ 9  9  9]
     [ 9  4  9]
     [ 7  9  9]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [5 6 7 6 5 8 2]
        predicted > [[5 5 5]
     [6 6 6]
     [7 7 7]
     [6 6 6]
     [5 3 5]
     [8 8 8]
     [8 4 2]
     [1 1 1]]
      sample 3:
        input     > [7 7 3 2 8 0 0]
        predicted > [[ 7  7  7]
     [ 7  7  7]
     [ 3  2  8]
     [ 2  3  3]
     [ 8  8  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 4400
      minibatch loss: 0.35038599371910095
      sample 1:
        input     > [4 7 7 6 0 0 0 0]
        predicted > [[ 4  4  7]
     [ 7  7  4]
     [ 7  6  4]
     [ 6  7  3]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [5 5 7 2 6 6 0 0]
        predicted > [[ 5  5  5]
     [ 5  5  5]
     [ 9  7  7]
     [ 3  2  6]
     [ 6  6  2]
     [ 6  6  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [8 2 5 0 0 0 0 0]
        predicted > [[ 8  8  8]
     [ 2  3  5]
     [ 5  2  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 4600
      minibatch loss: 0.2776692807674408
      sample 1:
        input     > [7 8 9 9 0 0 0 0]
        predicted > [[ 7  7  7]
     [ 8  8  8]
     [ 9  9  9]
     [ 9  8  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [3 5 9 5 2 6 5 0]
        predicted > [[ 3  3  5]
     [ 5  5  3]
     [ 9  9  5]
     [ 5  5  7]
     [ 2  8  8]
     [ 6  5  2]
     [ 9  2  3]
     [ 1  1  9]
     [-1 -1  1]
     [-1 -1 -1]]
      sample 3:
        input     > [6 3 7 9 5 2 0 0]
        predicted > [[ 6  7  6]
     [ 3  6  3]
     [ 7  5  7]
     [ 9  3  9]
     [ 5  8  5]
     [ 2  3  3]
     [ 1  1  9]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 4800
      minibatch loss: 0.24092251062393188
      sample 1:
        input     > [2 5 9 2 4 6 2 7]
        predicted > [[2 2 2]
     [5 5 5]
     [9 4 9]
     [2 9 2]
     [4 2 2]
     [6 5 4]
     [2 8 6]
     [7 7 3]
     [1 1 1]]
      sample 2:
        input     > [8 3 2 9 5 4 0 0]
        predicted > [[ 8  8  8]
     [ 3  3  3]
     [ 2  2  2]
     [ 9  5  9]
     [ 5  9  5]
     [ 4  2  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [7 6 4 2 2 0 0 0]
        predicted > [[ 7  7  7]
     [ 6  4  8]
     [ 4  6  6]
     [ 2  2  4]
     [ 2  8  5]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 5000
      minibatch loss: 0.24987684190273285
      sample 1:
        input     > [2 8 4 2 2 0 0 0]
        predicted > [[ 2  2  2]
     [ 2  8  8]
     [ 4  4  2]
     [ 8  2  4]
     [ 8  2  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [6 9 4 8 9 8 2 0]
        predicted > [[ 6  6  6]
     [ 9  9  9]
     [ 4  4  4]
     [ 8  8  8]
     [ 9  9  9]
     [ 8  8  3]
     [ 2  2  8]
     [ 1  1  1]
     [ 1 -1 -1]]
      sample 3:
        input     > [6 6 2 5 5 6 0 0]
        predicted > [[ 6  6  6]
     [ 5  6  6]
     [ 6  5  5]
     [ 2  2  2]
     [ 6  2  2]
     [ 2  5  6]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 5200
      minibatch loss: 0.2918197810649872
      sample 1:
        input     > [5 4 8 5 0 0 0 0]
        predicted > [[ 5  3  5]
     [ 4  4  2]
     [ 8  5  6]
     [ 5  8  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [6 8 6 3 8 5 0 0]
        predicted > [[ 8  6  6]
     [ 6  8  8]
     [ 6  6  6]
     [ 3  3  3]
     [ 6  8  6]
     [ 6  5  2]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [4 3 6 3 9 2 0 0]
        predicted > [[ 4  4  4]
     [ 3  3  3]
     [ 6  6  6]
     [ 3  5  3]
     [ 9  7  9]
     [ 2  3  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 5400
      minibatch loss: 0.15758396685123444
      sample 1:
        input     > [3 2 7 0 0 0 0 0]
        predicted > [[ 3  3  3]
     [ 2  2  3]
     [ 7  3  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [2 7 6 3 0 0 0 0]
        predicted > [[ 2  2  2]
     [ 7  7  1]
     [ 6  1 -1]
     [ 3 -1 -1]
     [ 1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [5 5 7 5 0 0 0 0]
        predicted > [[ 5  5  5]
     [ 5  5  5]
     [ 7  7  9]
     [ 5  3  7]
     [ 1  1  3]
     [-1 -1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 5600
      minibatch loss: 0.306735634803772
      sample 1:
        input     > [9 2 2 2 2 4 0 0]
        predicted > [[ 4  4  4]
     [ 9  9  5]
     [ 2  2  2]
     [ 2  2  8]
     [ 2  5  9]
     [ 8  2  1]
     [ 1  8 -1]
     [-1  1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 2:
        input     > [4 2 4 5 3 9 7 4]
        predicted > [[ 4  4  4]
     [ 2  2  2]
     [ 4  4  9]
     [ 5  5  2]
     [ 7  3  6]
     [ 3  7  3]
     [ 9  9  4]
     [ 4  4  5]
     [ 1  1  1]
     [-1 -1 -1]]
      sample 3:
        input     > [6 3 2 3 6 0 0 0]
        predicted > [[ 6  6  6]
     [ 3  3  3]
     [ 4  2  3]
     [ 3  3  2]
     [ 2  6  7]
     [ 5  1  1]
     [ 1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 5800
      minibatch loss: 0.4090876281261444
      sample 1:
        input     > [6 6 8 5 5 7 9 8]
        predicted > [[ 6  6  6]
     [ 6  5  5]
     [ 8  6  6]
     [ 5  8  8]
     [ 5  8  8]
     [ 9  7  7]
     [ 7  7  7]
     [ 8  3  1]
     [ 1  1 -1]]
      sample 2:
        input     > [5 2 3 7 4 0 0 0]
        predicted > [[ 5  5  5]
     [ 2  2  4]
     [ 3  3  3]
     [ 7  4  2]
     [ 4  7  7]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
      sample 3:
        input     > [2 8 4 4 8 0 0 0]
        predicted > [[ 2  2  2]
     [ 8  4  8]
     [ 4  8  4]
     [ 4  8  8]
     [ 8  4  4]
     [ 1  1  1]
     [-1 -1 -1]
     [-1 -1 -1]
     [-1 -1 -1]]
    
    batch 6000
      minibatch loss: 0.2645653188228607
      sample 1:
        input     > [6 2 8 4 2 2 8]
        predicted > [[ 6  6  6]
     [ 5  2  2]
     [ 2  6  8]
     [ 8  2  2]
     [ 2  4  4]
     [ 4  5  2]
     [ 8  8  8]
     [ 1  8  1]
     [-1  1 -1]]
      sample 2:
        input     > [4 7 9 8 2 3 4]
        predicted > [[ 4  4  4]
     [ 7  7  7]
     [ 9  9  9]
     [ 8  8  8]
     [ 2  2  2]
     [ 5  3  3]
     [ 3  4  5]
     [ 1  1  1]
     [-1 -1 -1]]
      sample 3:
        input     > [3 4 9 2 6 8 3]
        predicted > [[ 3  3  3]
     [ 4  2  4]
     [ 9  9  9]
     [ 2  4  8]
     [ 6  6  2]
     [ 8  6  6]
     [ 3  3  5]
     [ 1  1  1]
     [-1 -1 -1]]
    

    
    

    相关文章

      网友评论

          本文标题:(八)sequence to sequence —3

          本文链接:https://www.haomeiwen.com/subject/vulphqtx.html