微信公众号:Julia语言
每周一三五更新Julia语言;
每周二四六更新Python进阶;
Julia中的复数
全局变量 im
即复数 i ,表示 -1 的正平方根。因为 i
经常作为索引变量,所以不使用它来代表复数了。Julia
允许数值文本作为代数系数 ,也适用于复数:
julia> 1 + 2im
1 + 2im
可以对复数做标准算术运算:
julia> (1 + 2im)*(2 - 3im)
8 + 1im
julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im
julia> (1 + 2im) + (1 - 2im)
2 + 0im
julia> (-3 + 2im) - (5 - 1im)
-8 + 3im
julia> (-1 + 2im)^2
-3 - 4im
julia> (-1 + 2im)^2.5
2.729624464784009 - 6.9606644595719im
julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im
julia> 3(2 - 5im)
6 - 15im
julia> 3(2 - 5im)^2
-63 - 60im
julia> 3(2 - 5im)^-1.0
0.20689655172413796 + 0.5172413793103449im
类型提升机制保证了不同类型的运算对象能够在一起运算:
julia> 2(1 - 1im)
2 - 2im
julia> (2 + 3im) - 1
1 + 3im
julia> (1 + 2im) + 0.5
1.5 + 2.0im
julia> (2 + 3im) - 0.5im
2.0 + 2.5im
julia> 0.75(1 + 2im)
0.75 + 1.5im
julia> (2 + 3im) / 2
1.0 + 1.5im
julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im
julia> 2im^2
-2 + 0im
julia> 1 + 3/4im
1.0 - 0.75im
注意: 3/4im == 3/(4*im) == -(3/4*im)
,因为文本系数比除法优先。
处理复数的标准函数:
julia> z = 1 + 2im
1 + 2im
julia> real(1 + 2im) # real part of z
1
julia> imag(1 + 2im) # imaginary part of z
2
julia> conj(1 + 2im) # complex conjugate of z
1 - 2im
julia> abs(1 + 2im) # absolute value of z
2.23606797749979
julia> abs2(1 + 2im) # squared absolute value
5
julia> angle(1 + 2im) # phase angle in radians
1.1071487177940904
通常, 复数的绝对值( abs )是它到零的距离。 函数 abs2 返回绝对值的平方, 特别地用在复数上来避免开根。 angle 函数返回弧度制的相位(即 argument 或 arg )。 所有的基本函数也可以应用在复数上:
julia> sqrt(1im)
0.7071067811865476 + 0.7071067811865475im
julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im
julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991518im
julia> exp(1 + 2im)
-1.1312043837568135 + 2.4717266720048188im
julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im
作用在实数上的数学函数,返回值一般为实数;作用在复数上的,返回值为复数。例如, sqrt 对 -1 和 -1 +0im 的结果不同,即使 -1 == -1 + 0im :
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> sqrt(-1 + 0im)
0.0 + 1.0im
代数系数不能用于使用变量构造复数。乘法必须显式的写出来:
julia> a = 1; b = 2; a + b*im
1 + 2im
但是, 不 推荐使用上面的方法。推荐使用 complex 函数构造复数:
julia> a = 1; b = 2; complex(a, b)
1 + 2im
这种构造方式避免了乘法和加法操作。
Inf
和 NaN
也可以参与构造复数 (参考特殊的浮点数部分):
julia> 1 + Inf*im
1.0 + Inf*im
julia> 1 + NaN*im
1.0 + NaN*im

点击阅读原文可查看历史文章
网友评论