美文网首页深度学习目标跟踪&&目标检测
深度学习目标检测之—基于腾讯开源库NCNN的MobileNet-

深度学习目标检测之—基于腾讯开源库NCNN的MobileNet-

作者: 侠之大者_7d3f | 来源:发表于2018-10-01 17:35 被阅读227次

    前言


    开发环境

    • Ubuntu 18.04 (64bit)
    • opencv3.4.3
    • Clion IDE
    • ncnn库

    代码

    // Tencent is pleased to support the open source community by making ncnn available.
    //
    // Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
    //
    // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
    // in compliance with the License. You may obtain a copy of the License at
    //
    // https://opensource.org/licenses/BSD-3-Clause
    //
    // Unless required by applicable law or agreed to in writing, software distributed
    // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
    // CONDITIONS OF ANY KIND, either express or implied. See the License for the
    // specific language governing permissions and limitations under the License.
    
    #include <stdio.h>
    #include <vector>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <iostream>
    
    #include "net.h"
    
    struct Object
    {
        cv::Rect_<float> rect;
        int label;
        float prob;
    };
    
    static int detect_mobilenet(const cv::Mat& bgr, std::vector<Object>& objects)
    {
        ncnn::Net mobilenet;
    
        // model is converted from https://github.com/chuanqi305/MobileNet-SSD
        // and can be downloaded from https://drive.google.com/open?id=0ByaKLD9QaPtucWk0Y0dha1VVY0U
        mobilenet.load_param("/home/weipenghui/deepLearning/MobileNet-ssd/MobileNetSSD_deploy.param");
        mobilenet.load_model("/home/weipenghui/deepLearning/MobileNet-ssd/MobileNetSSD_deploy.bin");
    
        const int target_size = 300;
    
        int img_w = bgr.cols;
        int img_h = bgr.rows;
    
        ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size);
    
        const float mean_vals[3] = {127.5f, 127.5f, 127.5f};
        const float norm_vals[3] = {1.0/127.5,1.0/127.5,1.0/127.5};
        in.substract_mean_normalize(mean_vals, norm_vals);
    
        ncnn::Extractor ex = mobilenet.create_extractor();
    //     ex.set_num_threads(4);
    
        ex.input("data", in);
    
        cv::TickMeter t;
    
        ncnn::Mat out;
    
        t.start();
        ex.extract("detection_out",out);
        t.stop();
        std::cout<<"time="<<t.getTimeMilli()<<"ms"<<std::endl;
    
    //     printf("%d %d %d\n", out.w, out.h, out.c);
        objects.clear();
        for (int i=0; i<out.h; i++)
        {
            const float* values = out.row(i);
    
            Object object;
            object.label = values[0];
            object.prob = values[1];
            object.rect.x = values[2] * img_w;
            object.rect.y = values[3] * img_h;
            object.rect.width = values[4] * img_w - object.rect.x;
            object.rect.height = values[5] * img_h - object.rect.y;
    
            objects.push_back(object);
        }
    
        return 0;
    }
    
    static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
    {
        static const char* class_names[] = {"background",
                                            "aeroplane", "bicycle", "bird", "boat",
                                            "bottle", "bus", "car", "cat", "chair",
                                            "cow", "diningtable", "dog", "horse",
                                            "motorbike", "person", "pottedplant",
                                            "sheep", "sofa", "train", "tvmonitor"};
    
        cv::Mat image = bgr.clone();
    
        for (size_t i = 0; i < objects.size(); i++)
        {
            const Object& obj = objects[i];
    
            fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                    obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
    
            cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
    
            char text[256];
            sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
    
            int baseLine = 0;
            cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    
            int x = obj.rect.x;
            int y = obj.rect.y - label_size.height - baseLine;
            if (y < 0)
                y = 0;
            if (x + label_size.width > image.cols)
                x = image.cols - label_size.width;
    
            cv::rectangle(image, cv::Rect(cv::Point(x, y),
                                          cv::Size(label_size.width, label_size.height + baseLine)),
                          cv::Scalar(255, 255, 255), CV_FILLED);
    
            cv::putText(image, text, cv::Point(x, y + label_size.height),
                        cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
        }
    
        cv::imshow("image", image);
        cv::waitKey(0);
    }
    
    int main(int argc, char** argv)
    {
    
    
        const char* imagepath = "/home/weipenghui/Pictures/person_dog1.jpg";
    
        cv::Mat m = cv::imread(imagepath, CV_LOAD_IMAGE_COLOR);
        if (m.empty())
        {
            fprintf(stderr, "cv::imread %s failed\n", imagepath);
            return -1;
        }
    
        std::vector<Object> objects;
        detect_mobilenet(m, objects);
    
        draw_objects(m, objects);
    
        return 0;
    }
    
    
    
    

    测试结果

    图片.png

    时间:119ms

    图片.png

    时间:130ms

    总结

    End

    相关文章

      网友评论

        本文标题:深度学习目标检测之—基于腾讯开源库NCNN的MobileNet-

        本文链接:https://www.haomeiwen.com/subject/vvpnoftx.html