美文网首页
第八章节正则化编程作业

第八章节正则化编程作业

作者: 荔枝猪 | 来源:发表于2019-07-31 17:15 被阅读0次

第八章节编程作业:Logistic Regression

需要自己编程的主要包括以下5个文件:

  • plotData.m
  • sigmoid.m
  • costFunction.m
  • predict.m
  • costFunctionReg.m

plotData.m

function plotData(X, y)
% PLOTDATA Plots the data points X and y into a new figure 
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.

% Create New Figure
figure; hold on;

% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
%               2D plot, using the option 'k+' for the positive
%               examples and 'ko' for the negative examples.

% 找到所有正(1)负(0)对应的坐标(行号)
pos = find(y==1); neg = find(y==0);
% 画图
% k+为黑色的+符号;LineWidth线粗,MarkerSize为大小;
plot(X(pos,1),X(pos,2),'k+','LineWidth',2,'MarkerSize',7);
% ko为黑色的圆o;MarkerFaceColor,y,内部填充为黄色;
plot(X(neg,1),X(neg,2),'ko','MarkerFaceColor','y','MarkerSize',7);

% =================================================
hold off;

end

sigmoid.m

function g = sigmoid(z)
% SIGMOID Compute sigmoid function
%   g = SIGMOID(z) computes the sigmoid of z.

% You need to return the following variables correctly 
g = zeros(size(z));      %初始化g

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
%               vector or scalar).
g = 1./(1+exp(-z));
% 当z = 0时,g = 0.5;z趋于正无穷时,g趋于1,z趋于负无穷时,g趋于0;
% =============================================================

end

costFunction.m

function [J, grad] = costFunction(theta, X, y)
% COSTFUNCTION Compute cost and gradient for logistic regression
%   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
%   parameter for logistic regression and the gradient of the cost
%   w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));  %grad与theta纬数一致

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h = sigmoid(X*theta);
J = (-y'*log(h)-(1-y')*log(1-h))/m;
grad = ((h-y)'*X)/m;

% =============================================================

end

predict.m

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic 
%regression parameters theta
%   p = PREDICT(theta, X) computes the predictions for X using a 
%   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)

m = size(X, 1); % Number of training examples

% You need to return the following variables correctly
p = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters. 
%               You should set p to a vector of 0's and 1's
%
h = sigmoid(X*theta);
for i = 1 :length(h)
    if h(i) >=0.5
        p(i) = 1;
    else
        p(i) = 0;
    end
end
% =========================================================================
end

costFunctionReg.m

function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
%   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta

h = sigmoid(X*theta);
theta(1) = 0;
% J = sum(-y'*log(h)-(1-y')*log(1-h))/m+lambda/(2*m)*sum(power(theta,2));
J = (-y'*log(h)-(1-y')*log(1-h))/m+lambda/(2*m)*(theta')*theta;
% 如果是标量,则sum可以省略;如果是矩阵(有维度),则不可以省略
grad = ((h-y)'*X)/m+lambda/m*theta';
% theta0不参与正则化,而matlab中下标从1开始,所以theta(1)=theta0;
% 这样theta0的偏导为 grad = ((h-y)'*X)/m
% =============================================================

end

相关文章

  • 第八章节正则化编程作业

    第八章节编程作业:Logistic Regression 需要自己编程的主要包括以下5个文件: plotData....

  • 机器学习 - 线性回归中的正则化

    为什么要正则化? 正则化的本质是什么? 正则化有哪些方法? 1.为什么要正则化? 正则化可以解决模型过拟合的问题,...

  • 正则表达式

    正则表达式(称为RE,或正则,或正则表达式模式)本质上是嵌入在Python中的一种微小的、高度专业化的编程语言,可...

  • Python数据科学:正则化方法!

    本文主要介绍,Python数据科学:正则化方法。正则化方法的出现,通过收缩方法(正则化方法)进行回归。 正则化方法...

  • PyTorch学习笔记5 实现L1,L2正则化以及Dropout

    本期作业主要涉及深度学习中的几个技巧:L1, L2正则化以及dropout。 1. L1, L2正则化 1.1 正...

  • 关于正则化的理解

    什么是正则化?为什么要正则化?怎样正则化? 对正则化化一直不是十分理解,只知道正则化可以防止过拟合。为什么给los...

  • 吴恩达深度学习笔记(32)-Dropout正则化Dropout

    dropout 正则化(Dropout Regularization) 除了L2正则化,还有一个非常实用的正则化方...

  • 吴恩达机器学习- 正则化

    过拟合和欠拟合 定义和形态 解决方法减少特征值数量正则化 正则化 惩罚θ系数 线性回归正则化 逻辑回归正则化

  • Logistic模型及其Scikit-learn实现

    penalty:正则化参数,可选l1或l2,分别对应l1正则化和l2正则化,默认为l2正则化。一般来说l2正则化可...

  • 正则化

    一、正则化基础 正则化等价于结构风险最小化,就是在经验风险后面加上了表示模型复杂度的正则化项或惩罚项。 正则化的作...

网友评论

      本文标题:第八章节正则化编程作业

      本文链接:https://www.haomeiwen.com/subject/vwbtdctx.html