第八章节编程作业:Logistic Regression
需要自己编程的主要包括以下5个文件:
- plotData.m
- sigmoid.m
- costFunction.m
- predict.m
- costFunctionReg.m
plotData.m
function plotData(X, y)
% PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on;
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
% 找到所有正(1)负(0)对应的坐标(行号)
pos = find(y==1); neg = find(y==0);
% 画图
% k+为黑色的+符号;LineWidth线粗,MarkerSize为大小;
plot(X(pos,1),X(pos,2),'k+','LineWidth',2,'MarkerSize',7);
% ko为黑色的圆o;MarkerFaceColor,y,内部填充为黄色;
plot(X(neg,1),X(neg,2),'ko','MarkerFaceColor','y','MarkerSize',7);
% =================================================
hold off;
end
sigmoid.m
function g = sigmoid(z)
% SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z)); %初始化g
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).
g = 1./(1+exp(-z));
% 当z = 0时,g = 0.5;z趋于正无穷时,g趋于1,z趋于负无穷时,g趋于0;
% =============================================================
end
costFunction.m
function [J, grad] = costFunction(theta, X, y)
% COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); %grad与theta纬数一致
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h = sigmoid(X*theta);
J = (-y'*log(h)-(1-y')*log(1-h))/m;
grad = ((h-y)'*X)/m;
% =============================================================
end
predict.m
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
h = sigmoid(X*theta);
for i = 1 :length(h)
if h(i) >=0.5
p(i) = 1;
else
p(i) = 0;
end
end
% =========================================================================
end
costFunctionReg.m
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
h = sigmoid(X*theta);
theta(1) = 0;
% J = sum(-y'*log(h)-(1-y')*log(1-h))/m+lambda/(2*m)*sum(power(theta,2));
J = (-y'*log(h)-(1-y')*log(1-h))/m+lambda/(2*m)*(theta')*theta;
% 如果是标量,则sum可以省略;如果是矩阵(有维度),则不可以省略
grad = ((h-y)'*X)/m+lambda/m*theta';
% theta0不参与正则化,而matlab中下标从1开始,所以theta(1)=theta0;
% 这样theta0的偏导为 grad = ((h-y)'*X)/m
% =============================================================
end
网友评论