美文网首页
tf实现mnist

tf实现mnist

作者: __method__ | 来源:发表于2020-07-05 20:51 被阅读0次

1.编程环境

安装tensorflow命令:pip install tensorflow
操作系统:Win7
python版本:3.6
集成开发环境:jupyter notebook
tensorflow版本:1.6

2.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹不要选择解压到MNIST_data。
文件夹结构如下图所示:

image

3.完整代码

此章给读者能够直接运行的完整代码,使读者有编程结果的感性认识。
如果下面一段代码运行成功,则说明安装tensorflow环境成功。
想要了解代码的具体实现细节,请阅读后面的章节。

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

Weights = tf.Variable(tf.zeros([784, 10]))
biases = tf.Variable(tf.zeros([1,10]))
predict_y = tf.nn.softmax(tf.matmul(X_holder, Weights) + biases)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

session = tf.Session()
init = tf.global_variables_initializer()
session.run(init)

for i in range(500):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 25 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

上面一段代码的运行结果如下:

> Extracting MNIST_data\train-images-idx3-ubyte.gz
> Extracting MNIST_data\train-labels-idx1-ubyte.gz
> Extracting MNIST_data\t10k-images-idx3-ubyte.gz
> Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
> step:0 accuracy:0.4747
> step:25 accuracy:0.8553
> step:50 accuracy:0.8719
> step:75 accuracy:0.8868
> step:100 accuracy:0.8911
> step:125 accuracy:0.8998
> step:150 accuracy:0.8942
> step:175 accuracy:0.9050
> step:200 accuracy:0.9026
> step:225 accuracy:0.9076
> step:250 accuracy:0.9071
> step:275 accuracy:0.9049
> step:300 accuracy:0.9055
> step:325 accuracy:0.9101
> step:350 accuracy:0.9097
> step:375 accuracy:0.9116
> step:400 accuracy:0.9102
> step:425 accuracy:0.9113
> step:450 accuracy:0.9155
> step:475 accuracy:0.9151

从上面的运行结果可以看出,经过500步训练,模型准确率到达0.9151左右。

tf.equal(A, B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的

import tensorflow as tf
import numpy as np
 
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
 
with tf.Session() as sess:
    print(sess.run(tf.equal(A, B)))

输出:

[[ True  True  True False False]]

4.数据准备

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

第1行代码导入warnings库,第2行代码表示不打印警告信息;
第3行代码导入tensorflow库,取别名tf;
第4行代码人从tensorflow.examples.tutorials.mnist库中导入input_data文件;
本文作者使用anaconda集成开发环境,input_data文件所在路径:C:\ProgramData\Anaconda3\Lib\site-packages\tensorflow\examples\tutorials\mnist,如下图所示:

image

第6行代码调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;
第7行代码定义变量batch_size的值为100;
第8、9行代码中placeholder中文叫做占位符,将每次训练的特征矩阵X和预测目标值y赋值给变量X_holder和y_holder。

5.数据观察

本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。

5.1 查看变量mnist的方法和属性

dir(mnist)[-10:]

上面一段代码的运行结果如下:

['_asdict',
'_fields',
'_make',
'_replace',
'_source',
'count',
'index',
'test',
'train',
'validation']

为了节省篇幅,只打印最后10个方法和属性。
我们会用到的是其中test、train、validation这3个方法。

5.2 对比三个集合

train对应训练集,validation对应验证集,test对应测试集。
查看3个集合中的样本数量,代码如下:

print(mnist.train.num_examples)
print(mnist.validation.num_examples)
print(mnist.test.num_examples)

上面一段代码的运行结果如下:

> 55000
> 5000
> 10000

对比3个集合的方法和属性

image

从上面的运行结果可以看出,3个集合的方法和属性基本相同。
我们会用到的是其中images、labels、next_batch这3个属性或方法。

5.3 mnist.train.images观察

查看mnist.train.images的数据类型和矩阵形状。

images = mnist.train.images
type(images), images.shape

上面一段代码的运行结果如下:

(numpy.ndarray, (55000, 784))

从上面的运行结果可以看出,在变量mnist.train中总共有55000个样本,每个样本有784个特征。
原图片形状为28*28,28*28=784,每个图片样本展平后则有784维特征。
选取1个样本,用3种作图方式查看其图片内容,代码如下:

import matplotlib.pyplot as plt

image = mnist.train.images[1].reshape(-1, 28)
plt.subplot(131)
plt.imshow(image)
plt.axis('off')
plt.subplot(132)
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.subplot(133)
plt.imshow(image, cmap='gray_r')
plt.axis('off')
plt.show()

上面一段代码的运行结果如下图所示:

image

从上面的运行结果可以看出,调用plt.show方法时,参数cmap指定值为graygray_r符合正常的观看效果。

5.4 查看手写数字图

从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下:

import matplotlib.pyplot as plt
import math
import numpy as np

def drawDigit(position, image, title):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    plt.title(title)

def batchDraw(batch_size):
    images,labels = mnist.train.next_batch(batch_size)
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number, column_number))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                title = 'actual:%d' %(np.argmax(labels[index]))
                drawDigit(position, image, title)

batchDraw(196)
plt.show()

上面一段代码的运行结果如下图所示,本文作者对难以辨认的数字做了红色方框标注:

image

6.搭建神经网络

Weights = tf.Variable(tf.zeros([784, 10]))
biases = tf.Variable(tf.zeros([1,10]))
predict_y = tf.nn.softmax(tf.matmul(X_holder, Weights) + biases)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

该神经网络只有输入层和输出层,没有隐藏层。
第1行代码定义形状为784*10的权重矩阵Weights;
第2行代码定义形状为1*10的偏置矩阵biases;
第3行代码定义先通过矩阵计算,再使用激活函数softmax得出的每个分类的预测概率predict_y;
第4行代码定义损失函数loss,多分类问题使用交叉熵作为损失函数。
交叉熵的函数如下图所示,其中p(x)是实际值,q(x)是预测值

image

第5行代码定义优化器optimizer,使用梯度下降优化器;
第6行代码定义训练步骤train,即最小化损失。

7.变量初始化

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

对于神经网络模型,重要是其中的W、b这两个参数。
开始神经网络模型训练之前,这两个变量需要初始化。
第1行代码调用tf.global_variables_initializer实例化tensorflow中的Operation对象。

image

第2行代码调用tf.Session方法实例化会话对象;
第3行代码调用tf.Session对象的run方法做变量初始化。

8.模型训练

for i in range(500):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 25 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

第1行代码表示模型迭代训练500次;
第2行代码调用mnist.train对象的next_batch方法,选出数量为batch_size的样本;
第3行代码是模型训练,每运行1次此行代码,即模型训练1次;
第4-8行代码是每隔25次训练打印模型准确率。
上面一段代码的运行结果如下:

> step:0 accuracy:0.3161
> step:25 accuracy:0.8452
> step:50 accuracy:0.8668
> step:75 accuracy:0.8860
> step:100 accuracy:0.8906
> step:125 accuracy:0.8948
> step:150 accuracy:0.9008
> step:175 accuracy:0.9027
> step:200 accuracy:0.8956
> step:225 accuracy:0.9102
> step:250 accuracy:0.9022
> step:275 accuracy:0.9097
> step:300 accuracy:0.9039
> step:325 accuracy:0.9076
> step:350 accuracy:0.9137
> step:375 accuracy:0.9111
> step:400 accuracy:0.9069
> step:425 accuracy:0.9097
> step:450 accuracy:0.9150
> step:475 accuracy:0.9105

9.模型测试

import math
import matplotlib.pyplot as plt
import numpy as np

def drawDigit2(position, image, title, isTrue):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    if not isTrue:
        plt.title(title, color='red')
    else:
        plt.title(title)

def batchDraw2(batch_size):
    images,labels = mnist.test.next_batch(batch_size)
    predict_labels = session.run(predict_y, feed_dict={X_holder:images, y_holder:labels})
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number+8, column_number+8))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                actual = np.argmax(labels[index])
                predict = np.argmax(predict_labels[index])
                isTrue = actual==predict
                title = 'actual:%d\npredict:%d' %(actual,predict)
                drawDigit2(position, image, title, isTrue)

batchDraw2(100)
plt.show()

上面一段代码的运行结果如下图所示:

image

DNN是deep neural network的简称,中文叫做深层神经网络,有时也叫做多层感知机(Multi-Layer perceptron,MLP)。
从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层。
如下图示例,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。

image

1.编程环境

安装tensorflow命令:pip install tensorflow
操作系统:Win7
python版本:3.6
集成开发环境:jupyter notebook
tensorflow版本:1.6

2.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹不要选择解压到MNIST_data。
文件夹结构如下图所示:

image

3.完整代码

此章给读者能够直接运行的完整代码,使读者有编程结果的感性认识。
如果下面一段代码运行成功,则说明安装tensorflow环境成功。
想要了解代码的具体实现细节,请阅读后面的章节。
在迭代训练5000次后,模型的准确率可以到达98%左右,下面代码为了节省读者运行时间,只迭代训练1000次。

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

def addConnect(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.01))
    biases = tf.Variable(tf.zeros([1, out_size]))
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        return Wx_plus_b
    else:
        return activation_function(Wx_plus_b)

connect_1 = addConnect(X_holder, 784, 300, tf.nn.relu)
predict_y = addConnect(connect_1, 300, 10, tf.nn.softmax)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdagradOptimizer(0.3)
train = optimizer.minimize(loss)

session = tf.Session()
init = tf.global_variables_initializer()
session.run(init)

for i in range(1000):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 50 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

第12行代码tf.truncated_normal方法与tf.random_normal方法的区别如下图所示。
truncated中文叫做被切去顶端的,tf.truncated_normal方法产生的随机数都处于均值两边2个标准差之内。

image

上面一段代码的运行结果如下:

> Extracting MNIST_data\train-images-idx3-ubyte.gz
> Extracting MNIST_data\train-labels-idx1-ubyte.gz
> Extracting MNIST_data\t10k-images-idx3-ubyte.gz
> Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
> step:0 accuracy:0.4195
> step:50 accuracy:0.8827
> step:100 accuracy:0.9144
> step:150 accuracy:0.9175
> step:200 accuracy:0.9391
> step:250 accuracy:0.9422
> step:300 accuracy:0.9401
> step:350 accuracy:0.9550
> step:400 accuracy:0.9581
> step:450 accuracy:0.9568
> step:500 accuracy:0.9531
> step:550 accuracy:0.9618
> step:600 accuracy:0.9601
> step:650 accuracy:0.9586
> step:700 accuracy:0.9599
> step:750 accuracy:0.9651
> step:800 accuracy:0.9673
> step:850 accuracy:0.9691
> step:900 accuracy:0.9701
> step:950 accuracy:0.9667

从上面的运行结果可以看出,经过1000次迭代训练,模型准确率到达0.9667左右。

4.数据准备

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

第1行代码导入warnings库,第2行代码表示不打印警告信息;
第3行代码导入tensorflow库,取别名tf;
第4行代码人从tensorflow.examples.tutorials.mnist库中导入input_data文件;
本文作者使用anaconda集成开发环境,input_data文件所在路径:C:\ProgramData\Anaconda3\Lib\site-packages\tensorflow\examples\tutorials\mnist,如下图所示:

image

第6行代码调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;
第7行代码定义变量batch_size的值为100;
第8、9行代码中placeholder中文叫做占位符,将每次训练的特征矩阵X和预测目标值y赋值给变量X_holder和y_holder。

5.数据观察

本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。

5.1 查看变量mnist的方法和属性

dir(mnist)[-10:]

上面一段代码的运行结果如下:

> ['_asdict',
> '_fields',
> '_make',
> '_replace',
> '_source',
> 'count',
> 'index',
> 'test',
> 'train',
> 'validation']

为了节省篇幅,只打印最后10个方法和属性。
我们会用到的是其中test、train、validation这3个方法。

5.2 对比三个集合

train对应训练集,validation对应验证集,test对应测试集。
查看3个集合中的样本数量,代码如下:

print(mnist.train.num_examples)
print(mnist.validation.num_examples)
print(mnist.test.num_examples)

上面一段代码的运行结果如下:

> 55000
> 5000
> 10000

对比3个集合的方法和属性

image

从上面的运行结果可以看出,3个集合的方法和属性基本相同。
我们会用到的是其中images、labels、next_batch这3个属性或方法。

5.3 mnist.train.images观察

查看mnist.train.images的数据类型和矩阵形状。

images = mnist.train.images
type(images), images.shape

上面一段代码的运行结果如下:

(numpy.ndarray, (55000, 784))

从上面的运行结果可以看出,在变量mnist.train中总共有55000个样本,每个样本有784个特征。
原图片形状为28*28,28*28=784,每个图片样本展平后则有784维特征。
选取1个样本,用3种作图方式查看其图片内容,代码如下:

import matplotlib.pyplot as plt

image = mnist.train.images[1].reshape(-1, 28)
plt.subplot(131)
plt.imshow(image)
plt.axis('off')
plt.subplot(132)
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.subplot(133)
plt.imshow(image, cmap='gray_r')
plt.axis('off')
plt.show()

上面一段代码的运行结果如下图所示:

image

从上面的运行结果可以看出,调用plt.show方法时,参数cmap指定值为graygray_r符合正常的观看效果。

5.4 查看手写数字图

从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下:

import matplotlib.pyplot as plt
import math
import numpy as np

def drawDigit(position, image, title):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    plt.title(title)

def batchDraw(batch_size):
    images,labels = mnist.train.next_batch(batch_size)
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number, column_number))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                title = 'actual:%d' %(np.argmax(labels[index]))
                drawDigit(position, image, title)

batchDraw(196)
plt.show()

上面一段代码的运行结果如下图所示,本文作者对难以辨认的数字做了红色方框标注:

image

6.搭建神经网络

def addConnect(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size], stddev=0.01))
    biases = tf.Variable(tf.zeros([1, out_size]))
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        return Wx_plus_b
    else:
        return activation_function(Wx_plus_b)

connect_1 = addConnect(X_holder, 784, 300, tf.nn.relu)
predict_y = addConnect(connect_1, 300, 10, tf.nn.softmax)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdagradOptimizer(0.3)
train = optimizer.minimize(loss)

第1-8行代码定义addConnect函数,即在神经网络中添加1个连接层;
addConnect函数需要4个参数,第1个参数是输入层矩阵Inputs;
第2个参数是连接上一层神经元个数in_size,数据类型为整数;
第3个参数是连接下一层神经元个数,数据类型为整数;
第4个参数是激活函数。数据类型为函数对象。
第10行代码添加第1个连接层,并将其输出结果赋值给变量connect_1;
第11行代码添加第2个连接层,并将其输出结果赋值给变量predict_y,即标签预测值;
第12行代码定义损失函数loss,因为是多分类问题,使用交叉熵作为损失函数,tf.reduce_sum函数的第2个参数为1的原因是表示对行求和, 如果第2个参数为0节表示对列求和。
第13行代码定义优化器optimizer,作者使用过GradientDescentOptimizer、AdamOptimizer,经过实践对比,AdagradOptimizer在此问题的收敛效果较好,读者可以自己尝试设置不同的优化的效果;
第14行代码定义训练过程,即用优化器最小化损失。

7.变量初始化

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

对于神经网络模型,重要是其中的W、b这两个参数。
开始神经网络模型训练之前,这两个变量需要初始化。
第1行代码调用tf.global_variables_initializer实例化tensorflow中的Operation对象。

image

第2行代码调用tf.Session方法实例化会话对象;
第3行代码调用tf.Session对象的run方法做变量初始化。

8.模型训练

for i in range(1000):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 50 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

第1行代码表示模型迭代训练1000次;
第2行代码调用mnist.train对象的next_batch方法,选出数量为batch_size的样本;
第3行代码是模型训练,每运行1次此行代码,即模型训练1次;
第4-8行代码是每隔25次训练打印模型准确率。

9.模型测试

import math
import matplotlib.pyplot as plt
import numpy as np

def drawDigit2(position, image, title, isTrue):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    if not isTrue:
        plt.title(title, color='red')
    else:
        plt.title(title)

def batchDraw2(batch_size):
    images,labels = mnist.test.next_batch(batch_size)
    predict_labels = session.run(predict_y, feed_dict={X_holder:images, y_holder:labels})
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number+8, column_number+8))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                actual = np.argmax(labels[index])
                predict = np.argmax(predict_labels[index])
                isTrue = actual==predict
                title = 'actual:%d\npredict:%d' %(actual,predict)
                drawDigit2(position, image, title, isTrue)

batchDraw2(100)
plt.show()

上面一段代码的运行结果如下图所示:

image

从上面的运行结果可以看出,100个数字中只错了3个,符合前1章准确率为97%左右的计算结果。

相关文章

网友评论

      本文标题:tf实现mnist

      本文链接:https://www.haomeiwen.com/subject/vwlbqktx.html