断点续训,在mnist_backward.py中的with tf.Session()下加入ckpt的那三句话
![](https://img.haomeiwen.com/i11956727/49a939a33f456347.png)
实现输入手写数字图片输出识别结果
代码可能存在未对齐的情况
mnist_app.py
#coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward
def restore_model(testPicArr):
with tf.Graph().as_default() as tg:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y = mnist_forward.forward(x, None)
preValue = tf.argmax(y, 1)
variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
preValue = sess.run(preValue, feed_dict={x:testPicArr})
return preValue
else:
print("No checkpoint file found")
return -1
#预处理
def pre_pic(picName):
img = Image.open(picName) #打开传入的图片
reIm = img.resize((28,28), Image.ANTIALIAS) #为符合shape,用消除锯齿的方法resize
im_arr = np.array(reIm.convert('L')) #为符合颜色的要求,变成灰度图,并转化成矩阵的形式
threshold = 50
#模型要求输入的是黑底白字,我们输入的图片是白底黑字
#反色
for i in range(28):
for j in range(28):
im_arr[i][j] = 255 - im_arr[i][j] #求得互补的反色
if (im_arr[i][j] < threshold): #给图片做二值化处理,让图片只有纯白色点和纯黑色点,可以滤掉手写数字图片中的噪声,留下图片主要特征
#灰度图像二值化最常用的方法是阈值法,他利用图像中目标与背景的差异,把图像分别设置为两个不同的级别,选取一个合适的阈值,以确定某像素是目标还是背景,从而获得二值化的图像。
im_arr[i][j] = 0 #纯黑色是0
else: im_arr[i][j] = 255 #纯白色255
nm_arr = im_arr.reshape([1, 784])
nm_arr = nm_arr.astype(np.float32)
img_ready = np.multiply(nm_arr, 1.0/255.0)
return img_ready
def application():
testNum = int(input("input the number of test pictures:") )#输入要识别几张图片,input函数可以实现从控制台读入数字
for i in range(testNum):
testPic = input("the path of test picture:") #给出识别图片的路径和名称,raw_input函数实现从控制台读入字符串
testPicArr = pre_pic(testPic)
preValue = restore_model(testPicArr)
print "The prediction number is:", preValue
def main():
application()
if __name__ == '__main__':
main()
代码及手写图片下载地址
我自己手写了一个5,结果给我识别成3了,呜呜呜~
网友评论