插件名称:flink-connector-redis
插件地址:https://github.com/jeff-zou/flink-connector-redis.git
无法翻墙:https://gitee.com/jeff-zou/flink-connector-redis.git
项目介绍
基于bahir-flink二次开发,相对bahir调整的内容有:
1.增加Table/SQL API
2.增加维表查询支持
3.增加查询缓存(支持增量与全量)
4.增加支持整行保存功能,用于多字段的维表关联查询
5.增加限流功能,用于Flink SQL在线调试功能
6.增加支持Flink高版本(包括1.12,1.13,1.14+)
7.统一或增加过期策略、写入并发数等其它功能。
因bahir使用的flink接口版本较老,所以改动较大,开发过程中参考了腾讯云与阿里云两家产商的流计算产品,取两家之长,并增加了更丰富的功能。
支持功能对应redis的操作命令有:
插入 | 维表查询 |
---|---|
set | get |
hset | hget |
rpush lpush | |
incrBy decrBy hincrBy zincrby | |
sadd zadd pfadd(hyperloglog) | |
publish | |
zrem srem | |
del hdel |
使用方法:
在命令行执行 mvn package -DskipTests打包后,将生成的包flink-connector-redis-1.1.0.jar引入flink lib中即可,无需其它设置。
项目依赖jedis 3.7.1,如flink环境无jedis,则使用flink-connector-redis-1.1.0-jar-with-dependencies.jar
开发环境工程直接引用:
<dependency>
<groupId>io.github.jeff-zou</groupId>
<artifactId>flink-connector-redis</artifactId>
<version>1.1.0</version>
</dependency>
使用说明:
value.data.structure = column(默认)
无需通过primary key来映射redis中的Key,直接由ddl中的字段顺序来决定Key,如:
create table sink_redis(username VARCHAR, passport VARCHAR) with ('command'='set')
其中username为key, passport为value.
create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR) with ('command'='hset')
其中name为map结构的key, subject为field, score为value.
value.data.structure = row
整行内容保存至value并以'\01'分割
create table sink_redis(username VARCHAR, passport VARCHAR) with ('command'='set')
其中username为key, username\01passport为value.
create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR) with ('command'='hset')
其中name为map结构的key, subject为field, name\01subject\01score为value.
with参数说明:
字段 | 默认值 | 类型 | 说明 |
---|---|---|---|
connector | (none) | String | redis |
host | (none) | String | Redis IP |
port | 6379 | Integer | Redis 端口 |
password | null | String | 如果没有设置,则为 null |
database | 0 | Integer | 默认使用 db0 |
maxTotal | 2 | Integer | 最大连接数 |
maxIdle | 2 | Integer | 最大保持连接数 |
minIdle | 1 | Integer | 最小保持连接数 |
timeout | 2000 | Integer | 连接超时时间,单位 ms,默认 1s |
cluster-nodes | (none) | String | 集群ip与端口,当redis-mode为cluster时不为空,如:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000 |
command | (none) | String | 对应上文中的redis命令 |
redis-mode | (none) | Integer | mode类型: single cluster |
lookup.cache.max-rows | -1 | Integer | 查询缓存大小,减少对redis重复key的查询 |
lookup.cache.ttl | -1 | Integer | 查询缓存过期时间,单位为秒, 开启查询缓存条件是max-rows与ttl都不能为-1 |
lookup.max-retries | 1 | Integer | 查询失败重试次数 |
lookup.cache.load-all | false | Boolean | 开启全量缓存,当命令为hget时,将从redis map查询出所有元素并保存到cache中,用于解决缓存穿透问题 |
sink.max-retries | 1 | Integer | 写入失败重试次数 |
sink.parallelism | (none) | Integer | 写入并发数 |
value.data.structure | column | String | column: value值来自某一字段 (如, set: key值取自DDL定义的第一个字段, value值取自第二个字段) row: 将整行内容保存至value并以'\01'分割 |
在线调试SQL时,用于限制sink资源使用的参数:
Field | Default | Type | Description |
---|---|---|---|
sink.limit | false | Boolean | 限制开头 |
sink.limit.max-num | 10000 | Integer | taskmanager内每个slot可以写的最大数据量 |
sink.limit.interval | 100 | String | taskmanager内每个slot写入数据间隔 milliseconds |
sink.limit.max-online | 30 * 60 * 1000L | Long | taskmanager内每个slot最大在线时间, milliseconds |
集群类型为sentinel时额外连接参数:
字段 | 默认值 | 类型 | 说明 |
---|---|---|---|
master.name | (none) | String | 主名 |
sentinels.info | (none) | String | |
sentinels.password | none) | String |
数据类型转换
flink type | redis row converter |
---|---|
CHAR | String |
VARCHAR | String |
String | String |
BOOLEAN | String String.valueOf(boolean val) boolean Boolean.valueOf(String str) |
BINARY | String Base64.getEncoder().encodeToString byte[] Base64.getDecoder().decode(String str) |
VARBINARY | String Base64.getEncoder().encodeToString byte[] Base64.getDecoder().decode(String str) |
DECIMAL | String BigDecimal.toString DecimalData DecimalData.fromBigDecimal(new BigDecimal(String str),int precision, int scale) |
TINYINT | String String.valueOf(byte val) byte Byte.valueOf(String str) |
SMALLINT | String String.valueOf(short val) short Short.valueOf(String str) |
INTEGER | String String.valueOf(int val) int Integer.valueOf(String str) |
DATE | String the day from epoch as int date show as 2022-01-01 |
TIME | String the millisecond from 0'clock as int time show as 04:04:01.023 |
BIGINT | String String.valueOf(long val) long Long.valueOf(String str) |
FLOAT | String String.valueOf(float val) float Float.valueOf(String str) |
DOUBLE | String String.valueOf(double val) double Double.valueOf(String str) |
TIMESTAMP | String the millisecond from epoch as long timestamp TimeStampData.fromEpochMillis(Long.valueOf(String str)) |
使用示例:
-
维表查询:
create table sink_redis(name varchar, level varchar, age varchar) with ( 'connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single','password'='******','command'='hset');
-- 先在redis中插入数据,相当于redis命令: hset 3 3 100 --
insert into sink_redis select * from (values ('3', '3', '100'));
create table dim_table (name varchar, level varchar, age varchar) with ('connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single', 'password'='*****','command'='hget', 'maxIdle'='2', 'minIdle'='1', 'lookup.cache.max-rows'='10', 'lookup.cache.ttl'='10', 'lookup.max-retries'='3');
-- 随机生成10以内的数据作为数据源 --
-- 其中有一条数据会是: username = 3 level = 3, 会跟上面插入的数据关联 --
create table source_table (username varchar, level varchar, proctime as procTime()) with ('connector'='datagen', 'rows-per-second'='1', 'fields.username.kind'='sequence', 'fields.username.start'='1', 'fields.username.end'='10', 'fields.level.kind'='sequence', 'fields.level.start'='1', 'fields.level.end'='10');
create table sink_table(username varchar, level varchar,age varchar) with ('connector'='print');
insert into
sink_table
select
s.username,
s.level,
d.age
from
source_table s
left join dim_table for system_time as of s.proctime as d on
d.name = s.username
and d.level = s.level;
-- username为3那一行会关联到redis内的值,输出为: 3,3,100
-
多字段的维表关联查询
很多情况维表有多个字段,本实例展示如何利用'value.data.structure'='row'写多字段并关联查询。
-- 创建表
create table sink_redis(uid VARCHAR,score double,score2 double )
with ( 'connector' = 'redis',
'host' = '10.11.69.176',
'port' = '6379',
'redis-mode' = 'single',
'password' = '****',
'command' = 'SET',
'value.data.structure' = 'row'); -- 'value.data.structure'='row':整行内容保存至value并以'\01'分割
-- 写入测试数据,score、score2为需要被关联查询出的两个维度
insert into sink_redis select * from (values ('1', 10.3, 10.1));
-- 在redis中,value的值为: "1\x0110.3\x0110.1" --
-- 写入结束 --
-- create join table --
create table join_table with ('command'='get', 'value.data.structure'='row') like sink_redis
-- create result table --
create table result_table(uid VARCHAR, username VARCHAR, score double, score2 double) with ('connector'='print')
-- create source table --
create table source_table(uid VARCHAR, username VARCHAR, proc_time as procTime()) with ('connector'='datagen', 'fields.uid.kind'='sequence', 'fields.uid.start'='1', 'fields.uid.end'='2')
-- 关联查询维表,获得维表的多个字段值 --
insert
into
result_table
select
s.uid,
s.username,
j.score, -- 来自维表
j.score2 -- 来自维表
from
source_table as s
join join_table for system_time as of s.proc_time as j on
j.uid = s.uid
result:
2> +I[2, 1e0fe885a2990edd7f13dd0b81f923713182d5c559b21eff6bda3960cba8df27c69a3c0f26466efaface8976a2e16d9f68b3, null, null]
1> +I[1, 30182e00eca2bff6e00a2d5331e8857a087792918c4379155b635a3cf42a53a1b8f3be7feb00b0c63c556641423be5537476, 10.3, 10.1]
-
DataStream查询方式
示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamTest.java
hset示例,相当于redis命令:hset tom math 150
Configuration configuration = new Configuration();
configuration.setString(REDIS_MODE, REDIS_CLUSTER);
configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name());
RedisSinkMapper redisMapper = (RedisSinkMapper)RedisHandlerServices
.findRedisHandler(RedisMapperHandler.class, configuration.toMap())
.createRedisMapper(configuration);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
GenericRowData genericRowData = new GenericRowData(3);
genericRowData.setField(0, "tom");
genericRowData.setField(1, "math");
genericRowData.setField(2, "152");
DataStream<GenericRowData> dataStream = env.fromElements(genericRowData, genericRowData);
RedisCacheOptions redisCacheOptions = new RedisCacheOptions.Builder().setCacheMaxSize(100).setCacheTTL(10L).build();
FlinkJedisConfigBase conf = getLocalRedisClusterConfig();
RedisSinkFunction redisSinkFunction = new RedisSinkFunction<>(conf, redisMapper, redisCacheOptions);
dataStream.addSink(redisSinkFunction).setParallelism(1);
env.execute("RedisSinkTest");
-
redis-cluster写入示例
示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLTest.java
set示例,相当于redis命令: set test test11
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings);
String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( 'connector'='redis', " +
"'cluster-nodes'='10.11.80.147:7000,10.11.80.147:7001','redis- mode'='cluster','password'='******','command'='set')" ;
tEnv.executeSql(ddl);
String sql = " insert into sink_redis select * from (values ('test', 'test11'))";
TableResult tableResult = tEnv.executeSql(sql);
tableResult.getJobClient().get()
.getJobExecutionResult()
.get();
开发与测试环境
ide: IntelliJ IDEA
code format: google-java-format + Save Actions
code check: CheckStyle
flink 1.12/1.13/1.14+
jdk1.8 jedis3.7.1
如果需要flink 1.12版本支持,请切换到分支flink-1.12
<dependency>
<groupId>io.github.jeff-zou</groupId>
<artifactId>flink-connector-redis</artifactId>
<version>1.1.1-1.12</version>
</dependency>
网友评论