科研过程中利用Latex写文章是非常方便的一件事,下面是latex的一些写伪代码的代码。
1. Code One
\documentclass[conference]{IEEEtran}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{amsmath}
\begin{document}
%% 写算法伪代码或者流程的前期准备
\renewcommand{\algorithmicrequire}{\textbf{Input:}} % Use Input in the format of Algorithm
\renewcommand{\algorithmicensure}{\textbf{Output:}} % Use Output in the format of Algorithm
\begin{algorithm}[h]
\caption{Conjugate Gradient Algorithm with Dynamic Step-Size Control} % 名称
\label{alg::conjugateGradient}
\begin{algorithmic}[1]
\Require
$x_0$: initial individual, i.e, state;
$x_0$: initial solution;
$s$: step size;
\Ensure
optimal $x^{*}$
\State initial $g_0=0$ and $d_0=0$;
\Repeat
\State compute gradient directions $g_k=\bigtriangledown f(x_k)$;
\State compute Polak-Ribiere parameter $\beta_k=\frac{g_k^{T}(g_k-g_{k-1})}{\parallel g_{k-1} \parallel^{2}}$;
\State compute the conjugate directions $d_k=-g_k+\beta_k d_{k-1}$;
\State compute the step size $\alpha_k=s/\parallel d_k \parallel_{2}$;
\Until{($f(x_k)>f(x_{k-1})$)}
\end{algorithmic}
\end{algorithm}
\end{document}
Result One
result One.png2. Code Two
\documentclass[conference]{IEEEtran}
\usepackage{algorithm}
\usepackage{algorithm}
\usepackage{algorithmicx}
\usepackage{algpseudocode}
\usepackage{amsmath}
\usepackage[top=2cm, bottom=2cm, left=2cm, right=2cm]{geometry}
\begin{document}
%% 写算法伪代码或者流程的前期准备
\renewcommand{\algorithmicrequire}{\textbf{Input:}} % Use Input in the format of Algorithm
\renewcommand{\algorithmicensure}{\textbf{Output:}} % Use Output in the format of Algorithm
\begin{algorithm}[h]
\caption{Pseudocode of Simulated Annealing Algorithm} % 名称
\begin{algorithmic}[1]
\Require
$x_0$: initial individual or state;
$T_0$: a high enough initial temperature;
$T_{min}$: the lowest limit of temperature;
\Ensure
optimal state or approximate optimal state;
\State set $x_0 = x_{best}$, compute initial energy function $E(x_0)$;
\While {$T > T_{min}$}
\For{$i = 1$; $i<n$; $i++$ }
\State perturb current state $x_i$ for a new state $x_{new}$ and compute energy function $E(x_{new})$;
\State compute $\Delta$ = $E(x_{new}-E(x_{(i)})$;
\If {$\Delta$$E<0$} \State $x_{best} = x_{new}$
\Else \State the probability $P = exp(-dE/T_{(i)})$;
\If {$rand(0,1) < P$ }\State $x_{best} = x_{new}$
\Else \State $x_{best} = x_{best}$
\EndIf
\EndIf
\EndFor
\State $T = T * $ $ \alpha$, where $\alpha$ is decay factor ;
\EndWhile
\end{algorithmic}
\end{algorithm}
\end{document}
网友评论