美文网首页
高并发服务器

高并发服务器

作者: 锋芒不露大宝剑 | 来源:发表于2019-05-25 09:33 被阅读0次

多路IO转接

\color{red}{一\ select}

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, struct timeval* timeout);
  1. nfds: 监控的文件描述符集里最大文件描述符加1, 因为此参数会告诉内核检测前多少个文件描述符的状态
  2. readfds: 所监听的文件描述符"可读"事件, 传入传出参数
  3. writefds: 所监听的文件描述符"可写"事件, 传入传出参数
  4. exceptfds: 所监听的文件描述符"异常"事件, 传入传出参数
  5. timeout: 定时阻塞监控时间, 3种情况
    1> NULL, 永远等下去
    2> 设置timeval, 等待固定时间
    3> 设置timeval 里时间均为0, 检查描述字后立即返回, 轮询
  返回值: 成功 - 返回的是监听的 所有的 集合中, 满足条件的总数.
          失败 - 返回-1
struct timeval {
  long tv_sec;    秒
  long tv_usec;  微秒
};

// 将set清空 0
void FD_ZERO(fd_set* set);
// 将fd 从set中清除出去.
void FD_CLR(int fd, fd_set* set);
// 判断fd 是否在set集合中: == 1 存在
int FD_ISSET(int fd, fd_set* set);
// 将fd 设置到set集合中
void FD_SET(int fd, fd_set* set);

// exp:
fd_set readfds;
FD_ZERO(&readfds);
FD_SET(fd1, &readfds);
FD_SET(fd2, &readfds);
三个集合中一共有几个是有效的: select(...);
for() {
  FD_ISSET(fd1, &readfds); -- 1: 满足
}
#include "wrap.h"

#define SERV_PORT 6666

int main(int argc, char* argv[]) {
    int i, j, n, maxi;
    int nready, client[FD_SETSIZE];     /** 自定义数组client, 防止遍历1024个文件描述符, FD_SETSIZE默认为1024 */
    int maxfd, listenfd, connfd, sockfd;
    char buff[BUFSIZ], str[INET_ADDRSTRLEN];    /** INET_ADDRSTRLEN 16 */
    
    struct sockaddr_in cli_addr, serv_addr;
    socklen_t cli_addr_len, serv_addr_len;
    fd_set rset, allset;                /** rset 读事件文件描述符集合, allset用来暂存 */
    
    listenfd = Socket(AF_INET, SOCK_STREAM, 0);
    
    bzero(&serv_addr, sizeof(serv_addr));
    bzero(&cli_addr, sizeof(cli_addr));
    bzero(buff, sizeof(buff));
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_port = htons(SERV_PORT);
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    
    serv_addr_len = sizeof(serv_addr);
    Bind(listenfd, (struct sockaddr*)&serv_addr, serv_addr_len);
    
    Listen(listenfd, 128);
    
    maxfd = listenfd;               /** 起初 listenfd 即为最大文件描述符 */
    
    maxi = -1;                      /** 将来用作client[]的下标, 初始值指向0个元素之前的下标位置 */
    for (i = 0; i < FD_SETSIZE; i++) {
        client[i] = -1;             /** 用 -1 初始化client[] */
    }
    FD_ZERO(&allset);
    FD_SET(listenfd, &allset);      /** 构造select监控文件描述符集 */
    
    while (1) {
        rset = allset;              /** 每次循环时都从新设置select监控信号集 */
        nready = select(maxfd + 1, &rset, NULL, NULL, NULL);
        if (nready < 0) {
            perr_exit("select error");
        }
        if (FD_ISSET(listenfd, &rset)) {
            cli_addr_len = sizeof(cli_addr);
            connfd = Accept(listenfd, (struct sockaddr*)&cli_addr, &cli_addr_len);  /** Accept 不会阻塞 */
            printf("recive from %s at Port %d\n", inet_ntop(AF_INET, &cli_addr.sin_addr, str, sizeof(str)), ntohs(cli_addr.sin_port));
            for (i = 0; i < FD_SETSIZE; i++) {
                if (client[i] < 0) {            /** 找到client[]中没有使用的位置 */
                    client[i] = connfd;         /** 保存accept返回的文件描述符到client[]里 */ 
                    break;
                }
            }
            if (i == FD_SETSIZE) {              /** 达到select能监控的文件个数上限1024 */
                fputs("too many clients\n", stderr);
                exit(1);
            }
            FD_SET(connfd, &allset);            /** 向文件描述符集合allset添加新的文件描述符connfd */
            if (connfd > maxfd) {
                maxfd = connfd;                 /** select 第一个参数需要 */
            }
            if (i > maxi) {
                maxi = i;                       /** 保证maxi存的总是client[]最后一个元素的下标 */
            }
            if (--nready == 0) {
                continue;
            }
        }
        for (i = 0; i <= maxi; i++) {
            if ((sockfd = client[i]) < 0) {
                continue;
            }
            if (FD_ISSET(sockfd, & rset)) {
                if ((n = Read(sockfd, buff, sizeof(buff))) == 0) {
                    Close(sockfd);
                    FD_CLR(sockfd, &allset);
                    client[i] = -1;
                } else if (n > 0) {
                    for (j = 0; j < n; j++) {
                        buff[j] = toupper(buff[j]);
                    }
                    sleep(10);
                    Write(sockfd, buff, n);
                }
                if (--nready == 0) {
                    break;
                }
            }
        }
    }

    return 0;
}

\color{red}{一\ poll}

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
    fds: 结构体数组 的首地址
          fds[0].fd = listen_fd;
          fds[0].events = POLLIN/POLLOUT/POLLERR
          fds[0].revents = 0;  // 该值在设置时没有用, 当监听的fd有事件返回的时候, 该值会被操作系统赋值为对应的事件;POLLIN/POLLOUT/POLLERR
    nfds: 数组中元素的个数
    timeout: 毫秒级等待
          -1 阻塞等, #define INFTIM -1,  Linux中没有定义此宏
          0 立即返回, 不阻塞进程
          >0 等待指定毫秒数, 如当前系统时间精度不够毫秒, 向上取值
          
          poll(fds, 5, -1);

struct pollfd {
               int   fd;         /* file descriptor */ 描述符
               short events;     /* requested events */ 描述符对应的事件
               short revents;    /* returned events */ 返回的事件
           };
  1> poll可以突破1024个文件描述符的限制
  2> 与select(传入传出参数)相比, 监听集合与返回集合分离
  3> 搜索的返回变小, 不是固定1024个
  4> 查看一个进程可以打开的socketm描述符上限

  \color{blue}{cat \ /proc/sys/fs/file-max}
  修改上限值
  \color{blue}{sudo\ vi\ /etc/security/limits.conf}
  文件尾部写入以下配置
  \color{green}{*\ soft\ nofile\ 65536\ \ 最小值\ }
  \color{green}{*\ hard\ nofile\ 100000(最大可以是file-max显示的最大值)}
  将用户注销后, 使其生效

#define MAXLINE 80
#define SERV_PORT 6666
#define OPEN_MAX 1024


int main(int argc, char* argv[]) {
    int i, j, ret, maxi, listen_fd, conn_fd, sock_fd;
    int nready;
    ssize_t n;
    char buff[MAXLINE], str[INET_ADDRSTRLEN];
    socklen_t cli_len;
    struct pollfd client[OPEN_MAX];
    struct sockaddr_in serv_addr, cli_addr;
    
    bzero(buff, sizeof(buff));
    bzero(str, sizeof(str));
    bzero(&serv_addr, sizeof(serv_addr));
    bzero(&cli_addr, sizeof(cli_addr));
    bzero(client, sizeof(client));

    listen_fd = socket(AF_INET, SOCK_STREAM, 0);
    if (listen_fd < 0) {
        printf("%s\n", strerror(errno));
        exit(1);
    }
    // 端口复用
    int opt = 1;
    setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
    
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_port = htons(SERV_PORT);
    ret = inet_pton(AF_INET, "127.0.0.1", (void*)&(serv_addr.sin_addr.s_addr));
    if (ret < 0) {
        printf("%s\n", strerror(errno));
        exit(1);
    } else if (ret == 0) {
        printf("this host had been used\n");
        exit(1);
    }
    ret = bind(listen_fd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
    if (ret < 0) {
        printf("%s\n", strerror(errno));
        exit(1);
    }
    
    ret = listen(listen_fd, 128);
    if (ret < 0) {
        printf("%s\n", strerror(errno));
        exit(1);
    }
    
    client[0].fd = listen_fd;   /** 要监听的第一个文件描述符, 存入client[0] */
    client[0].events = POLLIN;  /** listen_fd监听普通读事件 */

    for (i = 1; i < OPEN_MAX; i++) {
        client[i].fd = -1;      /** 用-1初始化client里剩余的元素, 因为0也是文件描述符, 不能使用0*/ 
    }
    
    maxi = 0;                   /** client[]有效元素中最大元素的下标 */ 
    for (;;) {
        nready = poll(client, maxi + 1, -1);    /** 阻塞监听是否有连接请求 */ 
        if (client[0].revents & POLLIN) {       /** listen_fd有读事件就绪 */
            cli_len = sizeof(cli_addr);
            conn_fd = accept(listen_fd, (struct sockaddr*)&cli_addr, &cli_len);
            printf("recived from %s at Port %d\n", inet_ntop(AF_INET, &cli_addr.sin_addr, str, sizeof(str)), ntohs(cli_addr.sin_port));
            for (i = 1; i < OPEN_MAX; i++) {
                if (client[i].fd < 0) {
                    client[i].fd = conn_fd;     /** 找到client[]中空闲的位置, 存放accept返回的conn_fd*/
                    break;
                }
            }
            if (i == OPEN_MAX) {                /** 达到了最大客户端数量 */
                printf("too many clients\n");
                exit(1);
            }
            client[i].events = POLLIN;          /** 设置刚刚返回的conn_fd, 监控读事件 */
            if (i > maxi) {
                maxi = i;                       /** 更新client[]中 最大元素下标 */
            }
            if (--nready <= 0) {
                continue;                       /** 没有更多就绪事件时, 继续回到poll阻塞*/
            }
        }
        for (i = 1; i < maxi; i++) {
            /** 前面的if没有满足, 说明没有client_fd满足, 检测client[], 看是哪个conn_fd就绪 */
            if ((sock_fd = client[i].fd) < 0) {
                continue;
            }
            if (client[i].revents & POLLIN) {
                if ((n = read(sock_fd, buff, sizeof(buff))) < 0) {
                    /** connection reset by client */
                    if (errno == ECONNRESET) {
                        // 收到RST标志
                        printf("client[%d] aborted connection\n", i);
                        close(sock_fd);
                        client[i].fd = -1;      /** poll中不监控该描述符, 直接置为-1即可, 不用像select那样移除 */
                    } else {
                        printf("read error\n");
                        exit(1);
                    }
                } else if (n == 0) {            /** 说明客户端先关闭了链接*/
                    printf("client[%d] closed connection\n", i);
                    close(sock_fd);
                    client[i].fd = -1;
                } else {
                    for (j = 0; j < n; j++) {
                        buff[j] = toupper(buff[j]);
                    } 
                    write(sock_fd, buff, n);
                }
                if (--nready <= 0) {
                    break;
                }
            }
        }
    }

    printf("\n");
    return 0;
}

\color{red}{一\ epoll \ \ 仅限Linux系统}

  1> 原型

  #include <sys/epoll.h>
  1) 创建一个epoll句柄, 参数size用来告诉内核监听的文件描述符的个数(建议值), 跟内存大小有关, 返回一个文件描述符.
    int epoll_create(int size); //size监听数目

  2) 控制某个epoll监控的文件描述符上的事件: 注册、修改、删除.
    int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
      epfd: 为epoll_create的句柄
      op: 表示动作, 用三个宏来表示
       EPOLL_CTL_ADD (注册新的fd到epfd);
       EPOLL_CTL_MOD (修改已经注册的fd的监听事件);
       EPOLL_CTL_DEL (从epfd删除一个fd);
      fd: 要操作的描述符
      event: 告诉内核需要监听的事件

typedef union epoll_data {
    void* ptr;
    int fd;
    uint32_t u32;
    uint64_t u64;
}epoll_data_t;
struct epoll_event {
    __uint32_t events;  /** Epoll events */
        EPOLLIN
        EPOLLOUT
        EPOLLERR
    epoll_data_t data;  /** User data variable */
};

  2) 等待所监控文件描述符上有事件的产生, 类似于select()调用
    int epoll_wait(int epfd, struct epoll_event* events, int maxevents, int timeout);
      events: 传出参数, 用来存内核得到事件的集合;
      maxevents: 告知内核这个events有多大, 这个maxevents的值不能大于创建epoll_create()时的size;
      timeout: 超时时间
         -1  阻塞
         0  立即返回, 非阻塞
         >0  指定毫秒
      返回值: 成功返回有多少文件描述符就绪, 时间到时返回0, 出错返回-1 errno;
  3) 边沿触发(epoll ET)&水平触发(epoll LT)
    边沿触发: 高电频->低电频 || 低点频->高电频 (0->1 || 1->0)
    水平触发: 高电频->高电频 || 低电频->低电频 (1->1 || 0->0)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/socket.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <sys/epoll.h>

#include "wrap.h"

#define HOST "127.0.0.1"
#define PORT 6666
#define OPEN_MAX 5000
#define MAXLINE 1024

int main(int argc, char* argv[]) {
    int listen_fd, conn_fd, sock_fd, epfd;
    int i, j, n, ret, res_count;
    struct sockaddr_in serv_addr, cli_addr;
    socklen_t serv_addr_len, cli_addr_len;
    char buff[MAXLINE], str[INET_ADDRSTRLEN];
    struct epoll_event res_events[OPEN_MAX], listen_event;
    
    bzero(&serv_addr, sizeof(serv_addr));
    bzero(&cli_addr, sizeof(cli_addr));
    bzero(buff, sizeof(buff));
    bzero(str, sizeof(str));
    
    listen_fd = Socket(AF_INET, SOCK_STREAM, 0);
    int opt = 1;
    ret = setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
    if (ret == -1) {
        perr_exit("set sock opt error");
    }
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_port = htons(PORT);
    ret = inet_pton(AF_INET, HOST, (void*)&(serv_addr.sin_addr.s_addr));
    if (ret <= 0) {
        perr_exit("inet_pton() error");
    }
    serv_addr_len = sizeof(serv_addr);
    Bind(listen_fd, (struct sockaddr*)&serv_addr, serv_addr_len);
    Listen(listen_fd, 128);
    
    epfd = epoll_create(10);
    if(epfd < 0) {
        perr_exit("epoll_create error");
    }
    struct epoll_event event;
    event.events = EPOLLIN;
    event.data.fd = listen_fd;
    ret = epoll_ctl(epfd, EPOLL_CTL_ADD, listen_fd, &event);
    if (ret < 0) {
        perr_exit("epoll_ctl error");
    }
    while(1) {
        res_count = epoll_wait(epfd, res_events, OPEN_MAX, -1);
        if (res_count < 0) {
            perr_exit("epoll_wait error");
        } else {
            for(i = 0; i < res_count; i++) {
                listen_event = res_events[i];
                if (!(listen_event.events & EPOLLIN)) {
                    continue;
                }
                sock_fd = listen_event.data.fd;
                if (sock_fd == listen_fd) {
                    bzero(&cli_addr, sizeof(cli_addr));
                    cli_addr_len = sizeof(cli_addr);
                    conn_fd = Accept(listen_fd, (struct sockaddr*)&cli_addr, &cli_addr_len);
                    printf("connection fd[%d]\n", conn_fd);
                    struct epoll_event new_event;
                    new_event.events = EPOLLIN;
                    new_event.data.fd = conn_fd;
                    ret = epoll_ctl(epfd, EPOLL_CTL_ADD, conn_fd, &new_event);
                    if (ret < 0) {
                        perr_exit("epoll_ctl error");
                    }
                } else {
                    n = Read(sock_fd, buff, sizeof(buff));
                    if (n == 0) {
                        // close;
                        ret = epoll_ctl(epfd, EPOLL_CTL_DEL, sock_fd, &listen_event);
                        if (ret == -1) {
                            perr_exit("epoll_ctl error");
                        }
                        Close(sock_fd);
                    } else if (n < 0) {
                        if (errno == ECONNRESET) {
                            // 收到RST标志
                            printf("client[%d] aborted connection\n", i);
                            ret = epoll_ctl(epfd, EPOLL_CTL_DEL, sock_fd, &listen_event);
                            if (ret == -1) {
                                perr_exit("epoll_ctl error");
                            }   
                            Close(sock_fd);
                        } else {
                            perr_exit("read error");
                        }
                    } else {
                        for (j = 0; j < n; j++) {
                            buff[j] = toupper(buff[j]);
                        }
                        Writen(sock_fd, buff, n);
                    }
                }
            }
        }
    }
    return 0;
}
边沿触发&非阻塞IO
#define HOST "127.0.0.1"
#define PORT 6666
#define OPEN_MAX 5000
#define MAXLINE 5

int main(int argc, char* argv[]) {
    int listen_fd, conn_fd, sock_fd, epfd;
    int i, j, n, ret, res_count, flag;
    struct sockaddr_in serv_addr, cli_addr;
    socklen_t serv_addr_len, cli_addr_len;
    char buff[MAXLINE], str[INET_ADDRSTRLEN];
    struct epoll_event res_events[OPEN_MAX], listen_event;
    
    bzero(&serv_addr, sizeof(serv_addr));
    bzero(&cli_addr, sizeof(cli_addr));
    bzero(buff, sizeof(buff));
    bzero(str, sizeof(str));
    
    listen_fd = Socket(AF_INET, SOCK_STREAM, 0);
    int opt = 1;
    ret = setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
    if (ret == -1) {
        perr_exit("set sock opt error");
    }
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_port = htons(PORT);
    ret = inet_pton(AF_INET, HOST, (void*)&(serv_addr.sin_addr.s_addr));
    if (ret <= 0) {
        perr_exit("inet_pton() error");
    }
    serv_addr_len = sizeof(serv_addr);
    Bind(listen_fd, (struct sockaddr*)&serv_addr, serv_addr_len);
    Listen(listen_fd, 128);
    
    epfd = epoll_create(10);
    if(epfd < 0) {
        perr_exit("epoll_create error");
    }
    struct epoll_event event;
    event.events = EPOLLIN | EPOLLET;   // 边沿触发
    event.data.fd = listen_fd;
    ret = epoll_ctl(epfd, EPOLL_CTL_ADD, listen_fd, &event);
    if (ret < 0) {
        perr_exit("epoll_ctl error");
    }
    while(1) {
        res_count = epoll_wait(epfd, res_events, OPEN_MAX, -1);
        if (res_count < 0) {
            perr_exit("epoll_wait error");
        } else {
            for(i = 0; i < res_count; i++) {
                listen_event = res_events[i];
                if (!(listen_event.events & EPOLLIN)) {
                    continue;
                }
                sock_fd = listen_event.data.fd;
                if (sock_fd == listen_fd) {
                    bzero(&cli_addr, sizeof(cli_addr));
                    cli_addr_len = sizeof(cli_addr);
                    conn_fd = Accept(listen_fd, (struct sockaddr*)&cli_addr, &cli_addr_len);
                    printf("connection fd[%d]\n", conn_fd);
                    flag = fcntl(conn_fd, F_GETFL);     /// flag设置
                    flag |= O_NONBLOCK;
                    fcntl(conn_fd, F_SETFL, flag);
                    struct epoll_event new_event;
                    new_event.events = EPOLLIN;
                    new_event.data.fd = conn_fd;
                    ret = epoll_ctl(epfd, EPOLL_CTL_ADD, conn_fd, &new_event);
                    if (ret < 0) {
                        perr_exit("epoll_ctl error");
                    }
                } else {
                    while((n = Read(sock_fd, buff, sizeof(buff) / 2)) > 0) {
                        for (j = 0; j < n; j++) {
                            buff[j] = toupper(buff[j]);
                        }
                        Writen(sock_fd, buff, n);
                    }
                    /**
                    ret = epoll_ctl(epfd, EPOLL_CTL_DEL, sock_fd, &listen_event);
                    if (ret == -1) {
                        perr_exit("epoll_ctl error");
                    }   
                    Close(sock_fd);
                    */
                }
            }
        }
    }
    return 0;
}

  3) 反应堆模型
    

/*
 *epoll基于非阻塞I/O事件驱动
 */
#include <stdio.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#define MAX_EVENTS  1024                                    //监听上限数
#define BUFLEN 4096
#define SERV_PORT   8080

void recvdata(int fd, int events, void *arg);
void senddata(int fd, int events, void *arg);

/* 描述就绪文件描述符相关信息 */

struct myevent_s {
    int fd;                                                 //要监听的文件描述符
    int events;                                             //对应的监听事件
    void *arg;                                              //泛型参数
    void (*call_back)(int fd, int events, void *arg);       //回调函数
    int status;                                             //是否在监听:1->在红黑树上(监听), 0->不在(不监听)
    char buf[BUFLEN];
    int len;
    long last_active;                                       //记录每次加入红黑树 g_efd 的时间值
};

int g_efd;                                                  //全局变量, 保存epoll_create返回的文件描述符
struct myevent_s g_events[MAX_EVENTS+1];                    //自定义结构体类型数组. +1-->listen fd


/*将结构体 myevent_s 成员变量 初始化*/

void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg)
{
    ev->fd = fd;
    ev->call_back = call_back;
    ev->events = 0;
    ev->arg = arg;
    ev->status = 0;
    //memset(ev->buf, 0, sizeof(ev->buf));
    //ev->len = 0;
    ev->last_active = time(NULL);                       //调用eventset函数的时间

    return;
}

/* 向 epoll监听的红黑树 添加一个 文件描述符 */

void eventadd(int efd, int events, struct myevent_s *ev)
{
    struct epoll_event epv = {0, {0}};
    int op;
    epv.data.ptr = ev;
    epv.events = ev->events = events;       //EPOLLIN 或 EPOLLOUT

    if (ev->status == 1) {                                          //已经在红黑树 g_efd 里
        op = EPOLL_CTL_MOD;                                         //修改其属性
    } else {                                //不在红黑树里
        op = EPOLL_CTL_ADD;                 //将其加入红黑树 g_efd, 并将status置1
        ev->status = 1;
    }

    if (epoll_ctl(efd, op, ev->fd, &epv) < 0)                       //实际添加/修改
        printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
    else
        printf("event add OK [fd=%d], op=%d, events[%0X]\n", ev->fd, op, events);

    return ;
}

/* 从epoll 监听的 红黑树中删除一个 文件描述符*/

void eventdel(int efd, struct myevent_s *ev)
{
    struct epoll_event epv = {0, {0}};

    if (ev->status != 1)                                        //不在红黑树上
        return ;

    epv.data.ptr = ev;
    ev->status = 0;                                             //修改状态
    epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv);                //从红黑树 efd 上将 ev->fd 摘除

    return ;
}

/*  当有文件描述符就绪, epoll返回, 调用该函数 与客户端建立链接 */

void acceptconn(int lfd, int events, void *arg)
{
    struct sockaddr_in cin;
    socklen_t len = sizeof(cin);
    int cfd, i;

    if ((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1) {
        if (errno != EAGAIN && errno != EINTR) {
            /* 暂时不做出错处理 */
        }
        printf("%s: accept, %s\n", __func__, strerror(errno));
        return ;
    }

    do {
        for (i = 0; i < MAX_EVENTS; i++)                                //从全局数组g_events中找一个空闲元素
            if (g_events[i].status == 0)                                //类似于select中找值为-1的元素
                break;                                                  //跳出 for

        if (i == MAX_EVENTS) {
            printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);
            break;                                                      //跳出do while(0) 不执行后续代码
        }

        int flag = 0;
        if ((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) {             //将cfd也设置为非阻塞
            printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));
            break;
        }

        /* 给cfd设置一个 myevent_s 结构体, 回调函数 设置为 recvdata */

        eventset(&g_events[i], cfd, recvdata, &g_events[i]);   
        eventadd(g_efd, EPOLLIN, &g_events[i]);                         //将cfd添加到红黑树g_efd中,监听读事件

    } while(0);

    printf("new connect [%s:%d][time:%ld], pos[%d]\n", 
            inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);
    return ;
}

void recvdata(int fd, int events, void *arg)
{
    struct myevent_s *ev = (struct myevent_s *)arg;
    int len;

    len = recv(fd, ev->buf, sizeof(ev->buf), 0);            //读文件描述符, 数据存入myevent_s成员buf中

    eventdel(g_efd, ev);        //将该节点从红黑树上摘除

    if (len > 0) {

        ev->len = len;
        ev->buf[len] = '\0';                                //手动添加字符串结束标记
        printf("C[%d]:%s\n", fd, ev->buf);

        eventset(ev, fd, senddata, ev);                     //设置该 fd 对应的回调函数为 senddata
        eventadd(g_efd, EPOLLOUT, ev);                      //将fd加入红黑树g_efd中,监听其写事件

    } else if (len == 0) {
        close(ev->fd);
        /* ev-g_events 地址相减得到偏移元素位置 */
        printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);
    } else {
        close(ev->fd);
        printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
    }

    return;
}

void senddata(int fd, int events, void *arg)
{
    struct myevent_s *ev = (struct myevent_s *)arg;
    int len;

    len = send(fd, ev->buf, ev->len, 0);                    //直接将数据 回写给客户端。未作处理
    /*
    printf("fd=%d\tev->buf=%s\ttev->len=%d\n", fd, ev->buf, ev->len);
    printf("send len = %d\n", len);
    */

    if (len > 0) {

        printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);
        eventdel(g_efd, ev);                                //从红黑树g_efd中移除
        eventset(ev, fd, recvdata, ev);                     //将该fd的 回调函数改为 recvdata
        eventadd(g_efd, EPOLLIN, ev);                       //从新添加到红黑树上, 设为监听读事件

    } else {
        close(ev->fd);                                      //关闭链接
        eventdel(g_efd, ev);                                //从红黑树g_efd中移除
        printf("send[fd=%d] error %s\n", fd, strerror(errno));
    }

    return ;
}

/*创建 socket, 初始化lfd */

void initlistensocket(int efd, short port)
{
    int lfd = socket(AF_INET, SOCK_STREAM, 0);
    fcntl(lfd, F_SETFL, O_NONBLOCK);                                            //将socket设为非阻塞

    /* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg);  */
    eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);

    /* void eventadd(int efd, int events, struct myevent_s *ev) */
    eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);

    struct sockaddr_in sin;
    memset(&sin, 0, sizeof(sin));                                               //bzero(&sin, sizeof(sin))
    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = INADDR_ANY;
    sin.sin_port = htons(port);

    bind(lfd, (struct sockaddr *)&sin, sizeof(sin));

    listen(lfd, 20);

    return ;
}

int main(int argc, char *argv[])
{
    unsigned short port = SERV_PORT;

    if (argc == 2)
        port = atoi(argv[1]);                           //使用用户指定端口.如未指定,用默认端口

    g_efd = epoll_create(MAX_EVENTS+1);                 //创建红黑树,返回给全局 g_efd 
    if (g_efd <= 0)
        printf("create efd in %s err %s\n", __func__, strerror(errno));

    initlistensocket(g_efd, port);                      //初始化监听socket

    struct epoll_event events[MAX_EVENTS+1];            //保存已经满足就绪事件的文件描述符数组 
    printf("server running:port[%d]\n", port);

    int checkpos = 0, i;
    while (1) {
        /* 超时验证,每次测试100个链接,不测试listenfd 当客户端60秒内没有和服务器通信,则关闭此客户端链接 */

        long now = time(NULL);                          //当前时间
        for (i = 0; i < 100; i++, checkpos++) {         //一次循环检测100个。 使用checkpos控制检测对象
            if (checkpos == MAX_EVENTS)
                checkpos = 0;
            if (g_events[checkpos].status != 1)         //不在红黑树 g_efd 上
                continue;

            long duration = now - g_events[checkpos].last_active;       //客户端不活跃的世间

            if (duration >= 60) {
                close(g_events[checkpos].fd);                           //关闭与该客户端链接
                printf("[fd=%d] timeout\n", g_events[checkpos].fd);
                eventdel(g_efd, &g_events[checkpos]);                   //将该客户端 从红黑树 g_efd移除
            }
        }

        /*监听红黑树g_efd, 将满足的事件的文件描述符加至events数组中, 1秒没有事件满足, 返回 0*/
        int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);
        if (nfd < 0) {
            printf("epoll_wait error, exit\n");
            break;
        }

        for (i = 0; i < nfd; i++) {
            /*使用自定义结构体myevent_s类型指针, 接收 联合体data的void *ptr成员*/
            struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;  

            if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) {           //读就绪事件
                ev->call_back(ev->fd, events[i].events, ev->arg);
            }
            if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) {         //写就绪事件
                ev->call_back(ev->fd, events[i].events, ev->arg);
            }
        }
    }

    /* 退出前释放所有资源 */
    return 0;
}

相关文章

  • Nginx Tomcat集群配置

    并发访问 对于服务器来说,大量的并发访问容易造成服务器宕机 并发访问性能测试 可以通过压力测试来检查高并发访问的性...

  • 数据库性能影响(一)

    在高并发、高访问、高交互时无论是web服务器还是数据库服务器都面临巨大的压力。 对于web服务器,我们可以...

  • 高并发简介

    高并发发生在两处负载均衡集群与数据库主从复制-读写分离 高并发初期解决方案应对高并发,解决方案大多从系统或服务器级...

  • 线程池原理详解及如何用C语言实现线程池

    线程池是一种多线程处理形式,大多用于高并发服务器上,它能合理有效的利用高并发服务器上的线程资源;线程与进程用于处理...

  • 高并发服务器

    多路IO转接   1> poll可以突破1024个文件描述符的限制 2> 与select(传入传出参数)相比, 监...

  • 分布式集群

    web高并发开发 服务器端 keepalived + nginx/haproxy/lvs(代理)->[nginx(...

  • node高并发

    Node在处理高并发,I/O密集场景有明显的性能优势 高并发,是指在同一时间并发访问服务器 I/O密集指的是文件操...

  • OOM之unable to create new native

    高并发请求服务器时,经常出现如下异常:java.lang.OufOfMemoryError: unable to ...

  • Hystrix实现请求合并/请求缓存

    Hystrix请求合并用于应对服务器的高并发场景,通过合并请求,减少线程的创建和使用,降低服务器请求压力,提高在高...

  • 高并发服务器IO模型

    高并发服务器 IO 模型一、 什么是 IO?二、 IO 的 5 种模型三、Linux 并发网络编程模型四、sele...

网友评论

      本文标题:高并发服务器

      本文链接:https://www.haomeiwen.com/subject/vykmaqtx.html