k-近邻算法的一般流程:
收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
准备数据:使用Python解析、预处理数据。
分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
测试算法:计算错误率。
使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
海伦女士一直使用在线约会网站寻找适合自己的约会对象
她发现自己交往过的人可以进行如下分类:
不喜欢的人
魅力一般的人
极具魅力的人
海伦收集约会数据存放在文本文件datingTestSet.txt
样本数据主要包含以下3种特征:
每年获得的飞行常客里程数
玩视频游戏所消耗时间百分比
每周消费的冰淇淋淋公升数
import numpy as np
"""
函数说明:打开并解析文件,对数据进行分类:
1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
"""
def file2matrix(filename):
# 打开文件
fr = open(filename)
#读取⽂文件所有内容
arrayOLines = fr.readlines()
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
#打开的文件名
filename = 'examples/knn/datingTestSet.txt'
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
print(datingDataMat)
print(datingLabels)

分析数据:数据可视化
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
"""
函数说明:可视化数据
Parameters:
datingDataMat - 特征矩阵
datingLabels - 分类Label
Returns:
无
"""
def showdatas(datingDataMat, datingLabels):
#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))
numberOfLabels = len(datingLabels)
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title('plane vs game')
axs0_xlabel_text = axs[0][0].set_xlabel('plane')
axs0_ylabel_text = axs[0][0].set_ylabel(u'game')
plt.setp(axs0_title_text, size=9, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs1_title_text = axs[0][1].set_title('plane vs ice cream')
axs1_xlabel_text = axs[0][1].set_xlabel(u'plane')
axs1_ylabel_text = axs[0][1].set_ylabel(u'ice cream')
plt.setp(axs1_title_text, size=9, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为 15,透明度为0.5
axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
#设置标题,x轴label,y轴label
axs2_title_text = axs[1][0].set_title(u'game vs ice cream')
axs2_xlabel_text = axs[1][0].set_xlabel(u'game')
axs2_ylabel_text = axs[1][0].set_ylabel(u'ice cream')
plt.setp(axs2_title_text, size=9, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
#设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')
largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')
#添加图例
axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
#显示图片
plt.show()


网友评论