ReentrantLock

作者: DevilN | 来源:发表于2019-02-15 19:29 被阅读0次

类信息

  • 内部抽象类:Sync 继承 AbstractQueuedSynchronizer
  • 内部类:非公平锁:NonfairSync 继承 Sync

加锁过程

lock():CAS修改同步状态 成功则设置exclusiveOwnerThread为当前线程,然后执行业务,失败则调用acquire(1);

final void lock() {
        //设置AbstractQueuedSynchronizer的state为1
        if (compareAndSetState(0, 1))
            //成功后设置AbstractOwnableSynchronizer的thread为当前线程
            setExclusiveOwnerThread(Thread.currentThread());
        else
            //失败时线程阻塞
            acquire(1);
    }

acquire(1): AbstractQueuedSynchronizer中的方法,执行tryAcquire(1),acquireQueued(Node, 1),addWaiter(Node.EXCLUSIVE),接下来依次看这三个方法;

public final void acquire(int arg) {
    //尝试获取锁,如果获取成功则已,不成功则加入等待队列
    if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

tryAcquire(1):执行nonfairTryAcquire(acquires),即Sync类的方法nonfairTryAcquire

protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }

nonfairTryAcquire(acquires):非公平锁获取

final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        //再次获取同步状态,如果是0则获取锁执行
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        /**
         * 如果是当前线程是已经获取锁的线程
         * 让某个线程可以多次调用同一个ReentrantLock,每调用一次给state+1,
         * 由于某个线程已经持有了锁,所以这里不会有竞争,
         * 因此不需要利用CAS设置state(相当于一个偏向锁)。从这段代码可以看到,nextc每次加1,
         * 当nextc<0的时候抛出error,那么同一个锁最多能重入Integer.MAX_VALUE次,也就是2147483647。
         */
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

addWaiter(Node.EXCLUSIVE):AbstractQueuedSynchronizer中的方法,为当前线程和指定模式创建并扩充一个等待队列。Node.EXCLUSIVE标记表示节点正在独占模式下等待

private Node addWaiter(Node mode) {
    //为当前线程创建一个等待节点
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    //将需要等待的线程加入到等待队列,如果没有队列则新建执行enq
    //查看等待队列的尾部节点是否为空
    Node pred = tail;
    if (pred != null) {
        //设置当前线程的节点为尾节点,扩充队列,并返回当前线程节点
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

enq(node):判断尾节点是否为空,为空则初始化头尾节点(如果尾节点为空,则头节点一定为空,头节点为懒加载,只有队列中插入第一个节点时才初始化),否则插入新节点

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

acquireQueued(Node, 1):加入队列的节点再次尝试获取锁,否则进入阻塞状态

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            //再次尝试获取锁
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                //获取锁 --->  清除节点信息,设置为队列头结点
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            //如果获取不到锁
            // 1、shouldParkAfterFailedAcquire:判断是否进入阻塞,进入等待
            // 2、parkAndCheckInterrupt 进入等待,中断线程
            // 条件满足时,修改中断状态,再次进入循环获取锁
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

shouldParkAfterFailedAcquire(p, node):判断是否进入阻塞或者进入等待,通过判断当前节点的前驱节点状态,如果是SIGNAL表示自己被阻塞,返回true;如果小于0,则表示前驱节点为取消状态,跳过,直到链接到不是取消状态的节点,返回false;如果两种都不符合,则通过CAS修改前驱节点状态为Node.SIGNAL,返回false.

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    //前驱节点的等待状态
    int ws = pred.waitStatus;
    //判断前驱节点状态
    if (ws == Node.SIGNAL)
        /*
         * 此节点已设置状态,要求释放信号,因此可以安全停放。
         * This node has already set status asking a release
         * to signal it, so it can safely park.
         */
        return true;
    if (ws > 0) {
        /*
         * Predecessor was cancelled. Skip over predecessors and
         * indicate retry.
         */
        do {
            //跳过状态值为1的Node节点
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        /*
         * waitStatus must be 0 or PROPAGATE.  Indicate that we
         * need a signal, but don't park yet.  Caller will need to
         * retry to make sure it cannot acquire before parking.
         * 更新状态
         */
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

parkAndCheckInterrupt():

//禁用当前线程进入等待状态并中断线程本身
private final boolean parkAndCheckInterrupt() {
    //除非许可证可用,否则禁用当前线程以进行线程调度。
    LockSupport.park(this);
    return Thread.interrupted();
}

cancelAcquire(node):如果发生异常,取消正在进行的Node获取锁的尝试

private void cancelAcquire(Node node) {
    // Ignore if node doesn't exist
    if (node == null)
        return;

    node.thread = null;

    // Skip cancelled predecessors
    //跳过取消的前驱节点
    Node pred = node.prev;
    while (pred.waitStatus > 0)
        node.prev = pred = pred.prev;

    // predNext is the apparent node to unsplice. CASes below will
    // fail if not, in which case, we lost race vs another cancel
    // or signal, so no further action is necessary.
    Node predNext = pred.next;

    // Can use unconditional write instead of CAS here.
    // After this atomic step, other Nodes can skip past us.
    // Before, we are free of interference from other threads.
    //设置此节点的状态为CANCELLED,代表取消状态
    node.waitStatus = Node.CANCELLED;

    // If we are the tail, remove ourselves.
    //如果node是tail,更新tail为pred,并使pred.next指向null
    if (node == tail && compareAndSetTail(node, pred)) {
        compareAndSetNext(pred, predNext, null);
    } else {
        // If successor needs signal, try to set pred's next-link
        // so it will get one. Otherwise wake it up to propagate.
        //如果node既不是tail,又不是head的后继节点
        //则将node的前继节点的waitStatus置为SIGNAL
        //并使node的前继节点指向node的后继节点(相当于将node从队列中删掉了)
        int ws;
        if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                        (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
            Node next = node.next;
            if (next != null && next.waitStatus <= 0)
                compareAndSetNext(pred, predNext, next);
        } else {
            //如果node是head的后继节点,则直接唤醒node的后继节点
            //唤醒后继节点线程后,在做出队操作时将node节点删除
            unparkSuccessor(node);
        }

        node.next = node; // help GC
    }
}

相关文章

网友评论

    本文标题:ReentrantLock

    本文链接:https://www.haomeiwen.com/subject/vzwmeqtx.html