1.构建mapper类
ReadFruitMapper.java
package HBaseMR.HBaseToHBase;
import java.io.IOException;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
/**
* @ClassName ReadFruitMapper
* @MethodDesc:
* @Author Movle
* @Date 5/10/20 9:27 下午
* @Version 1.0
* @Email movle_xjk@foxmail.com
**/
public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> {
@Override
protected void map(ImmutableBytesWritable key, Result value, Context context)
throws IOException, InterruptedException {
//将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。
Put put = new Put(key.get());
//遍历添加column行
for(Cell cell: value.rawCells()){
//添加/克隆列族:info
if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){
//添加/克隆列:name
if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
//将该列cell加入到put对象中
put.add(cell);
//添加/克隆列:color
}else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){
//向该列cell加入到put对象中
put.add(cell);
}
}
}
//将从fruit读取到的每行数据写入到context中作为map的输出
context.write(key, put);
}
}
2.构建reduce类
WriteFruitMRReducer .java
package HBaseMR.HBaseToHBase;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.NullWritable;
import java.io.IOException;
/**
* @ClassName WriteFruitMRReducer
* @MethodDesc: TODO WriteFruitMRReducer功能介绍
* @Author Movle
* @Date 5/10/20 9:29 下午
* @Version 1.0
* @Email movle_xjk@foxmail.com
**/
public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put,NullWritable> {
@Override
protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context)
throws IOException, InterruptedException {
//读出来的每一行数据写入到fruit_mr表中
for(Put put: values){
context.write(NullWritable.get(), put);
}
}
}
3.构建runner
FruitToFruitMRRunner.java
package HBaseMR.HBaseToHBase;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
/**
* @ClassName FruitToFruitMRRunner
* @MethodDesc: TODO FruitToFruitMRRunner功能介绍
* @Author Movle
* @Date 5/10/20 9:32 下午
* @Version 1.0
* @Email movle_xjk@foxmail.com
**/
public class FruitToFruitMRRunner extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//得到Configuration
Configuration conf = this.getConf();
//创建Job任务
Job job = Job.getInstance(conf, this.getClass().getSimpleName());
job.setJarByClass(FruitToFruitMRRunner.class);
//配置Job,创建一个扫描器
Scan scan = new Scan();
scan.setCacheBlocks(false);
scan.setCaching(500);
//设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本
TableMapReduceUtil.initTableMapperJob(
"fruit",
scan,
ReadFruitMapper.class,
ImmutableBytesWritable.class,
Put.class,
job
);
// TableMapReduceUtil.initTableMapperJob(
// "fruit", //读数据的表
// scan, //扫描器
// ReadFruitMapper.class, //设置map类
// ImmutableBytesWritable.class, //设置输出的key类型
// Put.class, //设置Mapper输出value值类型
// job //配置的job
// );
//设置Reducer
TableMapReduceUtil.initTableReducerJob(
"fruit_mr",
WriteFruitMRReducer.class,
job);
// TableMapReduceUtil.initTableReducerJob(
// "fruit_mr", //将数据戏写入的表
// WriteFruitMRReducer.class, //设置reduce类
// job);
//设置Reduce数量,最少1个
job.setNumReduceTasks(1);
boolean isSuccess = job.waitForCompletion(true);
if(!isSuccess){
throw new IOException("Job running with error");
}
return isSuccess ? 0 : 1;
}
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
int status = ToolRunner.run(conf, new FruitToFruitMRRunner(), args);
System.exit(status);
}
}
4.打包上传到HBase集群并运行
/opt/module/hadoop-2.8.4/bin/yarn jar /opt/module/hbase-1.3.1/HBase-1.0-SNAPSHOT.jar HBaseMR.HBaseToHBase.FruitToFruitMRRunner
提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之
5.查看结果:
scan 'fruit_mr'
结果
网友评论