美文网首页
Python新起航

Python新起航

作者: plutoese | 来源:发表于2016-07-13 09:48 被阅读60次

Arguments

  • Immutable arguments are effectively passed “by value.”
  • Mutable arguments are effectively passed “by pointer.”

Argument Matching Syntax

image_1angt2tti1eku1fmm1dqau5q1riom.png-143.4kBimage_1angt2tti1eku1fmm1dqau5q1riom.png-143.4kB

Headers: Collecting arguments

def f(*args): print(args)

f()
# ()
f(2)
# (2,)
f(1,2,3,4)
# (1, 2, 3, 4)
def f2(a, *pargs, **kargs): print(a, pargs, kargs)

f2(1, 2, 3, x=1, y=2)
# 1 (2, 3) {'x': 1, 'y': 2}

Calls: Unpacking arguments

def func(a, b, c, d): print(a, b, c, d)
args = (1, 2)
args += (3, 4)
func(args)
# func() missing 3 required positional arguments: 'b', 'c', and 'd'
func(*args)
# 1 2 3 4
func(*(1, 2), **{'d': 4, 'c': 3})
# Same as func(1, 2, d=4, c=3)

Recursive Functions

First Example

def mysum(L):
    if not L:
        return 0
    else:
        return L[0] + mysum(L[1:])

print(mysum([1, 2, 3, 4, 5]))
# 15

Another Example

def mysum(L):
    first, *rest = L
    return first if not rest else first + mysum(rest)

print(mysum(('s', 'p', 'a', 'm')))
# spam

A example of handling arbitrary structures

def sumtree(L):
    tot = 0
    for x in L: # For each item at this level
        if not isinstance(x, list):
            tot += x # Add numbers directly
        else:
            tot += sumtree(x) # Recur for sublists
    return tot

print(sumtree([[[[[1], 2], 3], 4], 5]))
# 15

Also note that standard Python limits the depth of its runtime call stack—crucial to recursive call programs—to trap infinite recursion errors. To expand it, use the sys module

>>> sys.getrecursionlimit() # 1000 calls deep default
1000
>>> sys.setrecursionlimit(10000) # Allow deeper nesting

Indirect Function Calls: “First Class” Objects

def make(label): # Make a function but don't call it
    def echo(message):
        print(label + ':' + message)
    return echo

F = make('Spam')
F('Eggs!')

Exception Basics

If you don’t want the default exception behavior, wrap the call in a try statement to catch exceptions yourself.

def fetcher(obj, index):
    return obj[index]

x = 'spam'
try:
    fetcher(x, 4)
except IndexError: # Catch and recover
    print('got exception')

So far, we’ve been letting Python raise exceptions for us by making mistakes (on purpose this time!), but our scripts can raise exceptions too.

try:
    raise IndexError # Trigger exception manually
except IndexError:
    print('got exception')

As you’ll learn later in this part of the book, you can also define new exceptions of your own that are specific to your programs.

class AlreadyGotOne(Exception): pass # User-defined exception

The try/finally combination avoids this pitfall—when an exception does occur in a try block, finally blocks are executed while the program is being unwound.

def after():
    try:
        fetcher(x, 4)
    finally:
        print('after fetch')
    print('after try?')

after()
# after fetch
# Traceback (most recent call last):

The with/as statement runs an object’s context management logic to guarantee that termination actions occur, irrespective of any exceptions in its nested block.

with open('lumberjack.txt', 'w') as file: # Always close file on exit
    file.write('The larch!\n')

Managed Attributes

That’s one of the main roles of managed attributes—they provide ways to add attribute accessor logic after the fact. More generally, they support arbitrary attribute usage modes that go beyond simple data storage.

Four accessor techniques:

  • The __getattr__ and __setattr__ methods, for routing undefined attribute fetches and all attribute assignments to generic handler methods.
  • The __getattribute__ method, for routing all attribute fetches to a generic handler method.
  • The property built-in, for routing specific attribute access to get and set handler functions.
  • The descriptor protocol, for routing specific attribute accesses to instances of classes with arbitrary get and set handler methods, and the basis for other tools such as properties and slots.

Properties

The property protocol allows us to route a specific attribute’s get, set, and delete operations to functions or methods we provide, enabling us to insert code to be run automatically on attribute access, intercept attribute deletions, and provide documentation for the attributes if desired.

attribute = property(fget, fset, fdel, doc)

A First Example

class Person: # Add (object) in 2.X
    def __init__(self, name):
        self._name = name

    def getName(self):
        print('fetch...')
        return self._name

    def setName(self, value):
        print('change...')
        self._name = value

    def delName(self):
        print('remove...')
        del self._name

    name = property(getName, setName, delName, "name property docs")

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs getName
bob.name = 'Robert Smith' # Runs setName
print(bob.name)

Setter and deleter decorators

class Person:
    def __init__(self, name):
        self._name = name

    @property
    def name(self): # name = property(name) "name property docs"
        print('fetch...')
        return self._name

    @name.setter
    def name(self, value): # name = name.setter(name)
        print('change...')
        self._name = value

    @name.deleter
    def name(self): # name = name.deleter(name)
        print('remove...')
        del self._name

bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs name getter (name 1)
bob.name = 'Robert Smith' # Runs name setter (name 2)
print(bob.name)
del bob.name # Runs name deleter (name 3)

__getattr__ and __getattribute__

The __getattr__ and __getattribute__ methods are also more generic than properties and descriptors—they can be used to intercept access to any (or even all) instance attribute fetches, not just a single specific name.

In short, if a class defines or inherits the following methods, they will be run automatically when an instance is used in the context described by the comments to the right.

def __getattr__(self, name): # On undefined attribute fetch [obj.name]
def __getattribute__(self, name): # On all attribute fetch [obj.name]
def __setattr__(self, name, value): # On all attribute assignment [obj.name=value]
def __delattr__(self, name): # On all attribute deletion [del obj.name]

A first example

class Catcher:
    def __getattr__(self, name):
        print('Get: %s' % name)
    def __setattr__(self, name, value):
        print('Set: %s %s' % (name, value))

X = Catcher()
X.job # Prints "Get: job"
X.pay # Prints "Get: pay"
X.pay = 99 # Prints "Set: pay 99"

A second example

class Person: # Portable: 2.X or 3.X
    def __init__(self, name): # On [Person()]
        self._name = name # Triggers __setattr__!

    def __getattr__(self, attr): # On [obj.undefined]
        print('get: ' + attr)
        if attr == 'name': # Intercept name: not stored
            return self._name # Does not loop: real attr
        else: # Others are errors
            raise AttributeError(attr)

    def __setattr__(self, attr, value): # On [obj.any = value]
        print('set: ' + attr)
        if attr == 'name':
            attr = '_name' # Set internal name
        self.__dict__[attr] = value # Avoid looping here

    def __delattr__(self, attr): # On [del obj.any]
        print('del: ' + attr)
        if attr == 'name':
            attr = '_name' # Avoid looping here too
        del self.__dict__[attr] # but much less common

print('---------start--------')
bob = Person('Bob Smith') # bob has a managed attribute
print(bob.name) # Runs __getattr__
bob.name = 'Robert Smith' # Runs __setattr__
print(bob.name)
del bob.name # Runs __delattr__

Example: __getattr__ and __getattribute__ Compared

class GetAttr:
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattr__(self, attr): # On undefined attrs only
        print('get: ' + attr) # Not on attr1: inherited from class
        if attr == 'attr3': # Not on attr2: stored on instance
            return 3
        else:
            raise AttributeError(attr)

X = GetAttr()
print(X.attr1)
# 1
print(X.attr2)
# 2
print(X.attr3)
# get: attr3
# 3
class GetAttribute(object): # (object) needed in 2.X only
    attr1 = 1
    def __init__(self):
        self.attr2 = 2
    def __getattribute__(self, attr): # On all attr fetches
        print('get: ' + attr) # Use superclass to avoid looping here
        if attr == 'attr3':
            return 3
        else:
            return object.__getattribute__(self, attr)

X = GetAttribute()
print(X.attr1)
# get: attr1
# 1
print(X.attr2)
# get: attr2
# 2
print(X.attr3)
# get: attr3
# 3

Management Techniques Compared

The following first version uses properties to intercept and calculate attributes named square and cube.

class Powers(object): # Need (object) in 2.X only
    def __init__(self, square, cube):
        self._square = square # _square is the base value
        self._cube = cube # square is the property name

    def getSquare(self):
        return self._square ** 2

    def setSquare(self, value):
        self._square = value

    square = property(getSquare, setSquare)

    def getCube(self):
        return self._cube ** 3

    cube = property(getCube)

X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
# Same, but with generic __getattr__ undefined attribute interception
class Powers:
    def __init__(self, square, cube):
        self._square = square
        self._cube = cube

    def __getattr__(self, name):
        if name == 'square':
            return self._square ** 2
        elif name == 'cube':
            return self._cube ** 3
        else:
            raise TypeError('unknown attr:' + name)

    def __setattr__(self, name, value):
        if name == 'square':
            self.__dict__['_square'] = value # Or use object
        else:
            self.__dict__[name] = value
            
X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25
# Same, but with generic __getattribute__ all attribute interception
class Powers(object): # Need (object) in 2.X only
    def __init__(self, square, cube):
        self._square = square
        self._cube = cube

    def __getattribute__(self, name):
        if name == 'square':
            return object.__getattribute__(self, '_square') ** 2
        elif name == 'cube':
            return object.__getattribute__(self, '_cube') ** 3
        else:
            return object.__getattribute__(self, name)

    def __setattr__(self, name, value):
        if name == 'square':
            object.__setattr__(self, '_square', value) # Or use __dict__
        else:
            object.__setattr__(self, name , value)
            
X = Powers(3, 4)
print(X.square) # 3 ** 2 = 9
print(X.cube) # 4 ** 3 = 64
X.square = 5
print(X.square) # 5 ** 2 = 25

Delegation-based managers revisited

class Person:
    def __init__(self, name, job=None, pay=0):
        self.name = name
        self.job  = job
        self.pay  = pay
    def lastName(self):
        return self.name.split()[-1]
    def giveRaise(self, percent):
        self.pay = int(self.pay * (1 + percent))
    def __repr__(self):
        return '[Person: %s, %s]' % (self.name, self.pay)

class Manager:
    def __init__(self, name, pay):
        self.person = Person(name, 'mgr', pay)      # Embed a Person object
    def giveRaise(self, percent, bonus=.10):
        self.person.giveRaise(percent + bonus)      # Intercept and delegate
#    def __getattr__(self, attr):
#        return getattr(self.person, attr)           # Delegate all other attrs
##    def __repr__(self):
##        return str(self.person)                     # Must overload again (in 3.X)
    def __getattribute__(self, attr):
        print('**', attr)
        if attr in ['person', 'giveRaise']:
            return object.__getattribute__(self, attr)   # Fetch my attrs
        else:
            return getattr(self.person, attr)            # Delegate all others

sue = Person('Sue Jones', job='dev', pay=100000)
print(sue.lastName())
sue.giveRaise(.10)
print(sue)
tom = Manager('Tom Jones', 50000)    # Manager.__init__
print(tom.lastName())                # Manager.__getattr__ -> Person.lastName
tom.giveRaise(.10)                   # Manager.giveRaise -> Person.giveRaise
print(tom)                           # Manager.__repr__ -> Person.__repr__

Decorators

Coding Function Decorators

The following defines and applies a function decorator that counts the number of calls made to the decorated function and prints a trace message for each call.

class tracer:
    def __init__(self, func):             # On @ decoration: save original func
        self.calls = 0
        self.func = func

    def __call__(self, *args, **kwargs): # On call to original function
        self.calls += 1
        print('call %s to %s' % (self.calls, self.func.__name__))
        return self.func(*args, **kwargs)

@tracer
def spam(a, b, c):           # spam = tracer(spam)
    print(a + b + c)         # Wraps spam in a decorator object

@tracer
def eggs(x, y): # Same as: eggs = tracer(eggs)
    print(x ** y) # Wraps eggs in a tracer object

spam(1, 2, 3) # Really calls tracer instance: runs tracer.__call__
spam(a=4, b=5, c=6) # spam is an instance attribute
eggs(2, 16) # Really calls tracer instance, self.func is eggs
eggs(4, y=4) # self.calls is per-decoration here

Timing Calls

class timer:
    def __init__(self, func):
        self.func    = func
        self.alltime = 0
    def __call__(self, *args, **kargs):
        start   = time.clock()
        result  = self.func(*args, **kargs)
        elapsed = time.clock() - start
        self.alltime += elapsed
        print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime))
        return result

@timer
def listcomp(N):
    return [x * 2 for x in range(N)]

result = listcomp(5)                # Time for this call, all calls, return value
listcomp(50000)
listcomp(500000)
listcomp(1000000)
print(result)
print('allTime = %s' % listcomp.alltime)      # Total time for all listcomp calls

相关文章

  • Python新起航

    Arguments Immutable arguments are effectively passed “by ...

  • Python——起航

    python语言是一门解释性语言,意思就是边解释边执行的语言,所以它的运行速度慢,但是代码量少是它的特点之一。但是...

  • 新起航

    明天,将是职业生涯上需要特殊记录的一天,新的起点起航!竭尽全力,努力做到最好!包括工作和家庭!一定要合理安排好时间...

  • 新起航

    我的事

  • 2017-07-14

    新旅途第一步,加油起航

  • python 入门起航

    最近发现 Python 使用范围非常广,涉及到很多领域,并且在不同的领域都表现的很出色。而且 android 也越...

  • Python扬帆起航

    为什么学习编程? 浙江省信息技术课程改革方案已经出台,Python 确定进入浙江省信息技术高考,从 2018 年起...

  • 新坚持起航

    2018.06.11 卷 复盘第210 天 新坚持起航 趁热打铁,说干就干。 趁着昨天懒惰自责的余温,...

  • 新的起航

    前两天是弱阳性,今天非常明确。心中翻起无限的喜悦,同时也很淡定,真的是启航,而且是新(心❤)的情况。 感谢老天,感...

  • 2018新起航

    1、我的文字梦 多少年来总有一种文字的情节在自己的心中,愿意去写一些什么东东,愿意去分享什么,从最早的博客、贴吧,...

网友评论

      本文标题:Python新起航

      本文链接:https://www.haomeiwen.com/subject/wapsjttx.html