美文网首页
Python新起航

Python新起航

作者: plutoese | 来源:发表于2016-07-13 09:48 被阅读60次

    Arguments

    • Immutable arguments are effectively passed “by value.”
    • Mutable arguments are effectively passed “by pointer.”

    Argument Matching Syntax

    image_1angt2tti1eku1fmm1dqau5q1riom.png-143.4kBimage_1angt2tti1eku1fmm1dqau5q1riom.png-143.4kB

    Headers: Collecting arguments

    def f(*args): print(args)
    
    f()
    # ()
    f(2)
    # (2,)
    f(1,2,3,4)
    # (1, 2, 3, 4)
    
    def f2(a, *pargs, **kargs): print(a, pargs, kargs)
    
    f2(1, 2, 3, x=1, y=2)
    # 1 (2, 3) {'x': 1, 'y': 2}
    

    Calls: Unpacking arguments

    def func(a, b, c, d): print(a, b, c, d)
    args = (1, 2)
    args += (3, 4)
    func(args)
    # func() missing 3 required positional arguments: 'b', 'c', and 'd'
    func(*args)
    # 1 2 3 4
    func(*(1, 2), **{'d': 4, 'c': 3})
    # Same as func(1, 2, d=4, c=3)
    

    Recursive Functions

    First Example

    def mysum(L):
        if not L:
            return 0
        else:
            return L[0] + mysum(L[1:])
    
    print(mysum([1, 2, 3, 4, 5]))
    # 15
    

    Another Example

    def mysum(L):
        first, *rest = L
        return first if not rest else first + mysum(rest)
    
    print(mysum(('s', 'p', 'a', 'm')))
    # spam
    

    A example of handling arbitrary structures

    def sumtree(L):
        tot = 0
        for x in L: # For each item at this level
            if not isinstance(x, list):
                tot += x # Add numbers directly
            else:
                tot += sumtree(x) # Recur for sublists
        return tot
    
    print(sumtree([[[[[1], 2], 3], 4], 5]))
    # 15
    

    Also note that standard Python limits the depth of its runtime call stack—crucial to recursive call programs—to trap infinite recursion errors. To expand it, use the sys module

    >>> sys.getrecursionlimit() # 1000 calls deep default
    1000
    >>> sys.setrecursionlimit(10000) # Allow deeper nesting
    

    Indirect Function Calls: “First Class” Objects

    def make(label): # Make a function but don't call it
        def echo(message):
            print(label + ':' + message)
        return echo
    
    F = make('Spam')
    F('Eggs!')
    

    Exception Basics

    If you don’t want the default exception behavior, wrap the call in a try statement to catch exceptions yourself.

    def fetcher(obj, index):
        return obj[index]
    
    x = 'spam'
    try:
        fetcher(x, 4)
    except IndexError: # Catch and recover
        print('got exception')
    

    So far, we’ve been letting Python raise exceptions for us by making mistakes (on purpose this time!), but our scripts can raise exceptions too.

    try:
        raise IndexError # Trigger exception manually
    except IndexError:
        print('got exception')
    

    As you’ll learn later in this part of the book, you can also define new exceptions of your own that are specific to your programs.

    class AlreadyGotOne(Exception): pass # User-defined exception
    

    The try/finally combination avoids this pitfall—when an exception does occur in a try block, finally blocks are executed while the program is being unwound.

    def after():
        try:
            fetcher(x, 4)
        finally:
            print('after fetch')
        print('after try?')
    
    after()
    # after fetch
    # Traceback (most recent call last):
    

    The with/as statement runs an object’s context management logic to guarantee that termination actions occur, irrespective of any exceptions in its nested block.

    with open('lumberjack.txt', 'w') as file: # Always close file on exit
        file.write('The larch!\n')
    

    Managed Attributes

    That’s one of the main roles of managed attributes—they provide ways to add attribute accessor logic after the fact. More generally, they support arbitrary attribute usage modes that go beyond simple data storage.

    Four accessor techniques:

    • The __getattr__ and __setattr__ methods, for routing undefined attribute fetches and all attribute assignments to generic handler methods.
    • The __getattribute__ method, for routing all attribute fetches to a generic handler method.
    • The property built-in, for routing specific attribute access to get and set handler functions.
    • The descriptor protocol, for routing specific attribute accesses to instances of classes with arbitrary get and set handler methods, and the basis for other tools such as properties and slots.

    Properties

    The property protocol allows us to route a specific attribute’s get, set, and delete operations to functions or methods we provide, enabling us to insert code to be run automatically on attribute access, intercept attribute deletions, and provide documentation for the attributes if desired.

    attribute = property(fget, fset, fdel, doc)
    

    A First Example

    class Person: # Add (object) in 2.X
        def __init__(self, name):
            self._name = name
    
        def getName(self):
            print('fetch...')
            return self._name
    
        def setName(self, value):
            print('change...')
            self._name = value
    
        def delName(self):
            print('remove...')
            del self._name
    
        name = property(getName, setName, delName, "name property docs")
    
    bob = Person('Bob Smith') # bob has a managed attribute
    print(bob.name) # Runs getName
    bob.name = 'Robert Smith' # Runs setName
    print(bob.name)
    

    Setter and deleter decorators

    class Person:
        def __init__(self, name):
            self._name = name
    
        @property
        def name(self): # name = property(name) "name property docs"
            print('fetch...')
            return self._name
    
        @name.setter
        def name(self, value): # name = name.setter(name)
            print('change...')
            self._name = value
    
        @name.deleter
        def name(self): # name = name.deleter(name)
            print('remove...')
            del self._name
    
    bob = Person('Bob Smith') # bob has a managed attribute
    print(bob.name) # Runs name getter (name 1)
    bob.name = 'Robert Smith' # Runs name setter (name 2)
    print(bob.name)
    del bob.name # Runs name deleter (name 3)
    

    __getattr__ and __getattribute__

    The __getattr__ and __getattribute__ methods are also more generic than properties and descriptors—they can be used to intercept access to any (or even all) instance attribute fetches, not just a single specific name.

    In short, if a class defines or inherits the following methods, they will be run automatically when an instance is used in the context described by the comments to the right.

    def __getattr__(self, name): # On undefined attribute fetch [obj.name]
    def __getattribute__(self, name): # On all attribute fetch [obj.name]
    def __setattr__(self, name, value): # On all attribute assignment [obj.name=value]
    def __delattr__(self, name): # On all attribute deletion [del obj.name]
    

    A first example

    class Catcher:
        def __getattr__(self, name):
            print('Get: %s' % name)
        def __setattr__(self, name, value):
            print('Set: %s %s' % (name, value))
    
    X = Catcher()
    X.job # Prints "Get: job"
    X.pay # Prints "Get: pay"
    X.pay = 99 # Prints "Set: pay 99"
    

    A second example

    class Person: # Portable: 2.X or 3.X
        def __init__(self, name): # On [Person()]
            self._name = name # Triggers __setattr__!
    
        def __getattr__(self, attr): # On [obj.undefined]
            print('get: ' + attr)
            if attr == 'name': # Intercept name: not stored
                return self._name # Does not loop: real attr
            else: # Others are errors
                raise AttributeError(attr)
    
        def __setattr__(self, attr, value): # On [obj.any = value]
            print('set: ' + attr)
            if attr == 'name':
                attr = '_name' # Set internal name
            self.__dict__[attr] = value # Avoid looping here
    
        def __delattr__(self, attr): # On [del obj.any]
            print('del: ' + attr)
            if attr == 'name':
                attr = '_name' # Avoid looping here too
            del self.__dict__[attr] # but much less common
    
    print('---------start--------')
    bob = Person('Bob Smith') # bob has a managed attribute
    print(bob.name) # Runs __getattr__
    bob.name = 'Robert Smith' # Runs __setattr__
    print(bob.name)
    del bob.name # Runs __delattr__
    

    Example: __getattr__ and __getattribute__ Compared

    class GetAttr:
        attr1 = 1
        def __init__(self):
            self.attr2 = 2
        def __getattr__(self, attr): # On undefined attrs only
            print('get: ' + attr) # Not on attr1: inherited from class
            if attr == 'attr3': # Not on attr2: stored on instance
                return 3
            else:
                raise AttributeError(attr)
    
    X = GetAttr()
    print(X.attr1)
    # 1
    print(X.attr2)
    # 2
    print(X.attr3)
    # get: attr3
    # 3
    
    class GetAttribute(object): # (object) needed in 2.X only
        attr1 = 1
        def __init__(self):
            self.attr2 = 2
        def __getattribute__(self, attr): # On all attr fetches
            print('get: ' + attr) # Use superclass to avoid looping here
            if attr == 'attr3':
                return 3
            else:
                return object.__getattribute__(self, attr)
    
    X = GetAttribute()
    print(X.attr1)
    # get: attr1
    # 1
    print(X.attr2)
    # get: attr2
    # 2
    print(X.attr3)
    # get: attr3
    # 3
    

    Management Techniques Compared

    The following first version uses properties to intercept and calculate attributes named square and cube.

    class Powers(object): # Need (object) in 2.X only
        def __init__(self, square, cube):
            self._square = square # _square is the base value
            self._cube = cube # square is the property name
    
        def getSquare(self):
            return self._square ** 2
    
        def setSquare(self, value):
            self._square = value
    
        square = property(getSquare, setSquare)
    
        def getCube(self):
            return self._cube ** 3
    
        cube = property(getCube)
    
    X = Powers(3, 4)
    print(X.square) # 3 ** 2 = 9
    print(X.cube) # 4 ** 3 = 64
    X.square = 5
    print(X.square) # 5 ** 2 = 25
    
    # Same, but with generic __getattr__ undefined attribute interception
    class Powers:
        def __init__(self, square, cube):
            self._square = square
            self._cube = cube
    
        def __getattr__(self, name):
            if name == 'square':
                return self._square ** 2
            elif name == 'cube':
                return self._cube ** 3
            else:
                raise TypeError('unknown attr:' + name)
    
        def __setattr__(self, name, value):
            if name == 'square':
                self.__dict__['_square'] = value # Or use object
            else:
                self.__dict__[name] = value
                
    X = Powers(3, 4)
    print(X.square) # 3 ** 2 = 9
    print(X.cube) # 4 ** 3 = 64
    X.square = 5
    print(X.square) # 5 ** 2 = 25
    
    # Same, but with generic __getattribute__ all attribute interception
    class Powers(object): # Need (object) in 2.X only
        def __init__(self, square, cube):
            self._square = square
            self._cube = cube
    
        def __getattribute__(self, name):
            if name == 'square':
                return object.__getattribute__(self, '_square') ** 2
            elif name == 'cube':
                return object.__getattribute__(self, '_cube') ** 3
            else:
                return object.__getattribute__(self, name)
    
        def __setattr__(self, name, value):
            if name == 'square':
                object.__setattr__(self, '_square', value) # Or use __dict__
            else:
                object.__setattr__(self, name , value)
                
    X = Powers(3, 4)
    print(X.square) # 3 ** 2 = 9
    print(X.cube) # 4 ** 3 = 64
    X.square = 5
    print(X.square) # 5 ** 2 = 25
    

    Delegation-based managers revisited

    class Person:
        def __init__(self, name, job=None, pay=0):
            self.name = name
            self.job  = job
            self.pay  = pay
        def lastName(self):
            return self.name.split()[-1]
        def giveRaise(self, percent):
            self.pay = int(self.pay * (1 + percent))
        def __repr__(self):
            return '[Person: %s, %s]' % (self.name, self.pay)
    
    class Manager:
        def __init__(self, name, pay):
            self.person = Person(name, 'mgr', pay)      # Embed a Person object
        def giveRaise(self, percent, bonus=.10):
            self.person.giveRaise(percent + bonus)      # Intercept and delegate
    #    def __getattr__(self, attr):
    #        return getattr(self.person, attr)           # Delegate all other attrs
    ##    def __repr__(self):
    ##        return str(self.person)                     # Must overload again (in 3.X)
        def __getattribute__(self, attr):
            print('**', attr)
            if attr in ['person', 'giveRaise']:
                return object.__getattribute__(self, attr)   # Fetch my attrs
            else:
                return getattr(self.person, attr)            # Delegate all others
    
    sue = Person('Sue Jones', job='dev', pay=100000)
    print(sue.lastName())
    sue.giveRaise(.10)
    print(sue)
    tom = Manager('Tom Jones', 50000)    # Manager.__init__
    print(tom.lastName())                # Manager.__getattr__ -> Person.lastName
    tom.giveRaise(.10)                   # Manager.giveRaise -> Person.giveRaise
    print(tom)                           # Manager.__repr__ -> Person.__repr__
    

    Decorators

    Coding Function Decorators

    The following defines and applies a function decorator that counts the number of calls made to the decorated function and prints a trace message for each call.

    class tracer:
        def __init__(self, func):             # On @ decoration: save original func
            self.calls = 0
            self.func = func
    
        def __call__(self, *args, **kwargs): # On call to original function
            self.calls += 1
            print('call %s to %s' % (self.calls, self.func.__name__))
            return self.func(*args, **kwargs)
    
    @tracer
    def spam(a, b, c):           # spam = tracer(spam)
        print(a + b + c)         # Wraps spam in a decorator object
    
    @tracer
    def eggs(x, y): # Same as: eggs = tracer(eggs)
        print(x ** y) # Wraps eggs in a tracer object
    
    spam(1, 2, 3) # Really calls tracer instance: runs tracer.__call__
    spam(a=4, b=5, c=6) # spam is an instance attribute
    eggs(2, 16) # Really calls tracer instance, self.func is eggs
    eggs(4, y=4) # self.calls is per-decoration here
    

    Timing Calls

    class timer:
        def __init__(self, func):
            self.func    = func
            self.alltime = 0
        def __call__(self, *args, **kargs):
            start   = time.clock()
            result  = self.func(*args, **kargs)
            elapsed = time.clock() - start
            self.alltime += elapsed
            print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime))
            return result
    
    @timer
    def listcomp(N):
        return [x * 2 for x in range(N)]
    
    result = listcomp(5)                # Time for this call, all calls, return value
    listcomp(50000)
    listcomp(500000)
    listcomp(1000000)
    print(result)
    print('allTime = %s' % listcomp.alltime)      # Total time for all listcomp calls
    

    相关文章

      网友评论

          本文标题:Python新起航

          本文链接:https://www.haomeiwen.com/subject/wapsjttx.html