美文网首页
数据分析处理库pandas

数据分析处理库pandas

作者: ForgetThatNight | 来源:发表于2018-07-08 19:15 被阅读67次
import pandas
food_info = pandas.read_csv("food_info.csv")
#print(type(food_info))
print food_info.dtypes

输出 :
NDB_No int64
Shrt_Desc object
Water_(g) float64
Energ_Kcal int64
Protein_(g) float64
Lipid_Tot_(g) float64
Ash_(g) float64
Carbohydrt_(g) float64
Fiber_TD_(g) float64
Sugar_Tot_(g) float64
Calcium_(mg) float64
Iron_(mg) float64
Magnesium_(mg) float64
Phosphorus_(mg) float64
Potassium_(mg) float64
Sodium_(mg) float64
Zinc_(mg) float64
Copper_(mg) float64
Manganese_(mg) float64
Selenium_(mcg) float64
Vit_C_(mg) float64
Thiamin_(mg) float64
Riboflavin_(mg) float64
Niacin_(mg) float64
Vit_B6_(mg) float64
Vit_B12_(mcg) float64
Vit_A_IU float64
Vit_A_RAE float64
Vit_E_(mg) float64
Vit_D_mcg float64
Vit_D_IU float64
Vit_K_(mcg) float64
FA_Sat_(g) float64
FA_Mono_(g) float64
FA_Poly_(g) float64
Cholestrl_(mg) float64
dtype: object

#first_rows = food_info.head()
#print first_rows
#print(food_info.head(3))
#print food_info.columns
#print food_info.shape

输出 : (8618, 36)

#pandas uses zero-indexing
#Series object representing the row at index 0.
#print food_info.loc[0]

# Series object representing the seventh row.
#food_info.loc[6]

# Will throw an error: "KeyError: 'the label [8620] is not in the [index]'"
#food_info.loc[8620]
#The object dtype is equivalent to a string in Python
#object - For string values
#int - For integer values
#float - For float values
#datetime - For time values
#bool - For Boolean values
#print(food_info.dtypes)
# Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6.
#food_info.loc[3:6]

# Returns a DataFrame containing the rows at indexes 2, 5, and 10. Either of the following approaches will work.
# Method 1
#two_five_ten = [2,5,10] 
#food_info.loc[two_five_ten]

# Method 2
#food_info.loc[[2,5,10]]
# Series object representing the "NDB_No" column.
#ndb_col = food_info["NDB_No"]
#print ndb_col
# Alternatively, you can access a column by passing in a string variable.
#col_name = "NDB_No"
#ndb_col = food_info[col_name]
#columns = ["Zinc_(mg)", "Copper_(mg)"]
#zinc_copper = food_info[columns]
#print zinc_copper
#print zinc_copper
# Skipping the assignment.
#zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
#print(food_info.columns)
#print(food_info.head(2))
col_names = food_info.columns.tolist()
#print col_names
gram_columns = []

for c in col_names:
    if c.endswith("(g)"):
        gram_columns.append(c)
gram_df = food_info[gram_columns]
print(gram_df.head(3))
import pandas
food_info = pandas.read_csv("food_info.csv")
col_names = food_info.columns.tolist()
print(col_names)
print(food_info.head(3))
#print food_info["Iron_(mg)"]
#div_1000 = food_info["Iron_(mg)"] / 1000
#print div_1000
# Adds 100 to each value in the column and returns a Series object.
#add_100 = food_info["Iron_(mg)"] + 100

# Subtracts 100 from each value in the column and returns a Series object.
#sub_100 = food_info["Iron_(mg)"] - 100

# Multiplies each value in the column by 2 and returns a Series object.
#mult_2 = food_info["Iron_(mg)"]*2
#It applies the arithmetic operator to the first value in both columns, the second value in both columns, and so on
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
iron_grams = food_info["Iron_(mg)"] / 1000  
food_info["Iron_(g)"] = iron_grams
#Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))
weighted_protein = food_info["Protein_(g)"] * 2
weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
# the "Vit_A_IU" column ranges from 0 to 100000, while the "Fiber_TD_(g)" column ranges from 0 to 79
#For certain calculations, columns like "Vit_A_IU" can have a greater effect on the result, 
#due to the scale of the values
# The largest value in the "Energ_Kcal" column.
max_calories = food_info["Energ_Kcal"].max()
# Divide the values in "Energ_Kcal" by the largest value.
normalized_calories = food_info["Energ_Kcal"] / max_calories
normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat
#By default, pandas will sort the data by the column we specify in ascending order and return a new DataFrame
# Sorts the DataFrame in-place, rather than returning a new DataFrame.
#print food_info["Sodium_(mg)"]
food_info.sort_values("Sodium_(mg)", inplace=True)
print food_info["Sodium_(mg)"]
#Sorts by descending order, rather than ascending.
food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)
print food_info["Sodium_(mg)"]

输出 :

760     0.0
610     0.0
611     0.0
8387    0.0
8607    0.0
629     0.0
630     0.0
631     0.0
6470    0.0
654     0.0
8599    0.0
633     0.0
634     0.0
635     0.0
637     0.0
638     0.0
639     0.0
646     0.0
653     0.0
632     0.0
606     0.0
6463    0.0
655     0.0
673     0.0
658     0.0
3636    0.0
659     0.0
660     0.0
661     0.0
3663    0.0
       ... 
8153    NaN
8155    NaN
8156    NaN
8157    NaN
8158    NaN
8159    NaN
8160    NaN
8161    NaN
8163    NaN
8164    NaN
8165    NaN
8167    NaN
8169    NaN
8170    NaN
8172    NaN
8173    NaN
8174    NaN
8175    NaN
8176    NaN
8177    NaN
8178    NaN
8179    NaN
8180    NaN
8181    NaN
8183    NaN
8184    NaN
8185    NaN
8195    NaN
8251    NaN
8267    NaN
Name: Sodium_(mg), dtype: float64
276     38758.0
5814    27360.0
6192    26050.0
1242    26000.0
1245    24000.0
1243    24000.0
1244    23875.0
292     17000.0
1254    11588.0
5811    10600.0
8575     9690.0
291      8068.0
1249     8031.0
5812     7893.0
1292     7851.0
293      7203.0
4472     7027.0
4836     6820.0
1261     6580.0
3747     6008.0
1266     5730.0
4835     5586.0
4834     5493.0
1263     5356.0
1553     5203.0
1552     5053.0
1251     4957.0
1257     4843.0
294      4616.0
8613     4450.0
         ...   
8153        NaN
8155        NaN
8156        NaN
8157        NaN
8158        NaN
8159        NaN
8160        NaN
8161        NaN
8163        NaN
8164        NaN
8165        NaN
8167        NaN
8169        NaN
8170        NaN
8172        NaN
8173        NaN
8174        NaN
8175        NaN
8176        NaN
8177        NaN
8178        NaN
8179        NaN
8180        NaN
8181        NaN
8183        NaN
8184        NaN
8185        NaN
8195        NaN
8251        NaN
8267        NaN
Name: Sodium_(mg), dtype: float64
import pandas as pd
import numpy as np
titanic_survival = pd.read_csv("titanic_train.csv")
titanic_survival.head()
#The Pandas library uses NaN, which stands for "not a number", to indicate a missing value.
#we can use the pandas.isnull() function which takes a pandas series and returns a series of True and False values
age = titanic_survival["Age"]
#print(age.loc[0:10])
age_is_null = pd.isnull(age)
#print age_is_null
age_null_true = age[age_is_null]
#print age_null_true
age_null_count = len(age_null_true)
print(age_null_count)

输出 : 177

#The result of this is that mean_age would be nan. This is because any calculations we do with a null value also result in a null value
mean_age = sum(titanic_survival["Age"]) / len(titanic_survival["Age"])
print mean_age

输出 : nan

#we have to filter out the missing values before we calculate the mean.
good_ages = titanic_survival["Age"][age_is_null == False]
#print good_ages
correct_mean_age = sum(good_ages) / len(good_ages)
print correct_mean_age

输出 : 29.6991176471

# missing data is so common that many pandas methods automatically filter for it
correct_mean_age = titanic_survival["Age"].mean()
print correct_mean_age

输出 : 29.6991176471

#mean fare for each class
passenger_classes = [1, 2, 3]
fares_by_class = {}
for this_class in passenger_classes:
    pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]
    pclass_fares = pclass_rows["Fare"]
    fare_for_class = pclass_fares.mean()
    fares_by_class[this_class] = fare_for_class
print fares_by_class

输出 : {1: 84.154687499999994, 2: 20.662183152173913, 3: 13.675550101832993}

#index tells the method which column to group by
#values is the column that we want to apply the calculation to
#aggfunc specifies the calculation we want to perform
passenger_survival = titanic_survival.pivot_table(index="Pclass", values="Survived", aggfunc=np.mean)
print passenger_survival

输出 :
Pclass
1 0.629630
2 0.472826
3 0.242363
Name: Survived, dtype: float64

passenger_age = titanic_survival.pivot_table(index="Pclass", values="Age")
print(passenger_age)

输出 :
Pclass
1 38.233441
2 29.877630
3 25.140620
Name: Age, dtype: float64

port_stats = titanic_survival.pivot_table(index="Embarked", values=["Fare","Survived"], aggfunc=np.sum)
print(port_stats)
#specifying axis=1 or axis='columns' will drop any columns that have null values
drop_na_columns = titanic_survival.dropna(axis=1)
new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
#print new_titanic_survival
row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
print row_index_83_age
print row_index_1000_pclass

输出 :
28.0
1

new_titanic_survival = titanic_survival.sort_values("Age",ascending=False)
print new_titanic_survival[0:10]
itanic_reindexed = new_titanic_survival.reset_index(drop=True)
print(titanic_reindexed.iloc[0:10])
# This function returns the hundredth item from a series
def hundredth_row(column):
    # Extract the hundredth item
    hundredth_item = column.iloc[99]
    return hundredth_item

# Return the hundredth item from each column
hundredth_row = titanic_survival.apply(hundredth_row)
print hundredth_row
def not_null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)

column_null_count = titanic_survival.apply(not_null_count)
print column_null_count
#By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate over rows instead of columns.
def which_class(row):
    pclass = row['Pclass']
    if pd.isnull(pclass):
        return "Unknown"
    elif pclass == 1:
        return "First Class"
    elif pclass == 2:
        return "Second Class"
    elif pclass == 3:
        return "Third Class"

classes = titanic_survival.apply(which_class, axis=1)
print classes

输出 :

0       Third Class
1       First Class
2       Third Class
3       First Class
4       Third Class
5       Third Class
6       First Class
7       Third Class
8       Third Class
9      Second Class
10      Third Class
11      First Class
12      Third Class
13      Third Class
14      Third Class
15     Second Class
16      Third Class
17     Second Class
18      Third Class
19      Third Class
20     Second Class
21     Second Class
22      Third Class
23      First Class
24      Third Class
25      Third Class
26      Third Class
27      First Class
28      Third Class
29      Third Class
           ...     
861    Second Class
862     First Class
863     Third Class
864    Second Class
865    Second Class
866    Second Class
867     First Class
868     Third Class
869     Third Class
870     Third Class
871     First Class
872     First Class
873     Third Class
874    Second Class
875     Third Class
876     Third Class
877     Third Class
878     Third Class
879     First Class
880    Second Class
881     Third Class
882     Third Class
883    Second Class
884     Third Class
885     Third Class
886    Second Class
887     First Class
888     Third Class
889     First Class
890     Third Class
dtype: object
def is_minor(row):
    if row["Age"] < 18:
        return True
    else:
        return False

minors = titanic_survival.apply(is_minor, axis=1)
#print minors

def generate_age_label(row):
    age = row["Age"]
    if pd.isnull(age):
        return "unknown"
    elif age < 18:
        return "minor"
    else:
        return "adult"

age_labels = titanic_survival.apply(generate_age_label, axis=1)
print age_labels

输出 :

0        adult
1        adult
2        adult
3        adult
4        adult
5      unknown
6        adult
7        minor
8        adult
9        minor
10       minor
11       adult
12       adult
13       adult
14       minor
15       adult
16       minor
17     unknown
18       adult
19     unknown
20       adult
21       adult
22       minor
23       adult
24       minor
25       adult
26     unknown
27       adult
28     unknown
29     unknown
        ...   
861      adult
862      adult
863    unknown
864      adult
865      adult
866      adult
867      adult
868    unknown
869      minor
870      adult
871      adult
872      adult
873      adult
874      adult
875      minor
876      adult
877      adult
878    unknown
879      adult
880      adult
881      adult
882      adult
883      adult
884      adult
885      adult
886      adult
887      adult
888    unknown
889      adult
890      adult
dtype: object
titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
print age_group_survival

输出 :

age_labels
adult      0.381032
minor      0.539823
unknown    0.293785
Name: Survived, dtype: float64
#Series (collection of values)
#DataFrame (collection of Series objects)
#Panel (collection of DataFrame objects)


#A Series object can hold many data types, including
#float - for representing float values
#int - for representing integer values
#bool - for representing Boolean values
#datetime64[ns] - for representing date & time, without time-zone
#datetime64[ns, tz] - for representing date & time, with time-zone
#timedelta[ns] - for representing differences in dates & times (seconds, minutes, etc.)
#category - for representing categorical values
#object - for representing String values

#FILM - film name
#RottenTomatoes - Rotten Tomatoes critics average score
#RottenTomatoes_User - Rotten Tomatoes user average score
#RT_norm - Rotten Tomatoes critics average score (normalized to a 0 to 5 point system)
#RT_user_norm - Rotten Tomatoes user average score (normalized to a 0 to 5 point system)
#Metacritic - Metacritic critics average score
#Metacritic_User - Metacritic user average score


import pandas as pd
fandango = pd.read_csv('fandango_score_comparison.csv')
series_film = fandango['FILM']
print(series_film[0:5])
series_rt = fandango['RottenTomatoes']
print (series_rt[0:5])

输出 :

0    Avengers: Age of Ultron (2015)
1                 Cinderella (2015)
2                    Ant-Man (2015)
3            Do You Believe? (2015)
4     Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object
0    74
1    85
2    80
3    18
4    14
Name: RottenTomatoes, dtype: int64
# Import the Series object from pandas
from pandas import Series

film_names = series_film.values
#print type(film_names)
#print film_names
rt_scores = series_rt.values
#print rt_scores
series_custom = Series(rt_scores , index=film_names)
series_custom[['Minions (2015)', 'Leviathan (2014)']]

输出 :

Minions (2015)      54
Leviathan (2014)    99
dtype: int64
# int index is also aviable
series_custom = Series(rt_scores , index=film_names)
series_custom[['Minions (2015)', 'Leviathan (2014)']]
fiveten = series_custom[5:10]
print(fiveten)

输出 :

The Water Diviner (2015)        63
Irrational Man (2015)           42
Top Five (2014)                 86
Shaun the Sheep Movie (2015)    99
Love & Mercy (2015)             89
dtype: int64
original_index = series_custom.index.tolist()
#print original_index
sorted_index = sorted(original_index)
sorted_by_index = series_custom.reindex(sorted_index)
#print sorted_by_index

输出 :

'71 (2015)                                         97
5 Flights Up (2015)                                52
A Little Chaos (2015)                              40
A Most Violent Year (2014)                         90
About Elly (2015)                                  97
Aloha (2015)                                       19
American Sniper (2015)                             72
American Ultra (2015)                              46
Amy (2015)                                         97
Annie (2014)                                       27
Ant-Man (2015)                                     80
Avengers: Age of Ultron (2015)                     74
Big Eyes (2014)                                    72
Birdman (2014)                                     92
Black Sea (2015)                                   82
Black or White (2015)                              39
Blackhat (2015)                                    34
Cake (2015)                                        49
Chappie (2015)                                     30
Child 44 (2015)                                    26
Cinderella (2015)                                  85
Clouds of Sils Maria (2015)                        89
Danny Collins (2015)                               77
Dark Places (2015)                                 26
Do You Believe? (2015)                             18
Dope (2015)                                        87
Entourage (2015)                                   32
Escobar: Paradise Lost (2015)                      52
Ex Machina (2015)                                  92
Fantastic Four (2015)                               9
                                                   ..
The Loft (2015)                                    11
The Longest Ride (2015)                            31
The Man From U.N.C.L.E. (2015)                     68
The Overnight (2015)                               82
The Salt of the Earth (2015)                       96
The Second Best Exotic Marigold Hotel (2015)       62
The SpongeBob Movie: Sponge Out of Water (2015)    78
The Stanford Prison Experiment (2015)              84
The Vatican Tapes (2015)                           13
The Water Diviner (2015)                           63
The Wedding Ringer (2015)                          27
The Wolfpack (2015)                                84
The Woman In Black 2 Angel of Death (2015)         22
The Wrecking Crew (2015)                           93
Timbuktu (2015)                                    99
Tomorrowland (2015)                                50
Top Five (2014)                                    86
Trainwreck (2015)                                  85
True Story (2015)                                  45
Two Days, One Night (2014)                         97
Unbroken (2014)                                    51
Unfinished Business (2015)                         11
Unfriended (2015)                                  60
Vacation (2015)                                    27
Welcome to Me (2015)                               71
What We Do in the Shadows (2015)                   96
When Marnie Was There (2015)                       89
While We're Young (2015)                           83
Wild Tales (2014)                                  96
Woman in Gold (2015)                               52
dtype: int64
sc2 = series_custom.sort_index()
sc3 = series_custom.sort_values()
#print(sc2[0:10])
print(sc3[0:10])

输出 :

Paul Blart: Mall Cop 2 (2015)     5
Hitman: Agent 47 (2015)           7
Hot Pursuit (2015)                8
Fantastic Four (2015)             9
Taken 3 (2015)                    9
The Boy Next Door (2015)         10
The Loft (2015)                  11
Unfinished Business (2015)       11
Mortdecai (2015)                 12
Seventh Son (2015)               12
dtype: int64
#The values in a Series object are treated as an ndarray, the core data type in NumPy
import numpy as np
# Add each value with each other
print np.add(series_custom, series_custom)
# Apply sine function to each value
np.sin(series_custom)
# Return the highest value (will return a single value not a Series)
np.max(series_custom)

输出 :

Avengers: Age of Ultron (2015)                    148
Cinderella (2015)                                 170
Ant-Man (2015)                                    160
Do You Believe? (2015)                             36
Hot Tub Time Machine 2 (2015)                      28
The Water Diviner (2015)                          126
Irrational Man (2015)                              84
Top Five (2014)                                   172
Shaun the Sheep Movie (2015)                      198
Love & Mercy (2015)                               178
Far From The Madding Crowd (2015)                 168
Black Sea (2015)                                  164
Leviathan (2014)                                  198
Unbroken (2014)                                   102
The Imitation Game (2014)                         180
Taken 3 (2015)                                     18
Ted 2 (2015)                                       92
Southpaw (2015)                                   118
Night at the Museum: Secret of the Tomb (2014)    100
Pixels (2015)                                      34
McFarland, USA (2015)                             158
Insidious: Chapter 3 (2015)                       118
The Man From U.N.C.L.E. (2015)                    136
Run All Night (2015)                              120
Trainwreck (2015)                                 170
Selma (2014)                                      198
Ex Machina (2015)                                 184
Still Alice (2015)                                176
Wild Tales (2014)                                 192
The End of the Tour (2015)                        184
                                                 ... 
Clouds of Sils Maria (2015)                       178
Testament of Youth (2015)                         162
Infinitely Polar Bear (2015)                      160
Phoenix (2015)                                    198
The Wolfpack (2015)                               168
The Stanford Prison Experiment (2015)             168
Tangerine (2015)                                  190
Magic Mike XXL (2015)                             124
Home (2015)                                        90
The Wedding Ringer (2015)                          54
Woman in Gold (2015)                              104
The Last Five Years (2015)                        120
Mission: Impossible – Rogue Nation (2015)       184
Amy (2015)                                        194
Jurassic World (2015)                             142
Minions (2015)                                    108
Max (2015)                                         70
Paul Blart: Mall Cop 2 (2015)                      10
The Longest Ride (2015)                            62
The Lazarus Effect (2015)                          28
The Woman In Black 2 Angel of Death (2015)         44
Danny Collins (2015)                              154
Spare Parts (2015)                                104
Serena (2015)                                      36
Inside Out (2015)                                 196
Mr. Holmes (2015)                                 174
'71 (2015)                                        194
Two Days, One Night (2014)                        194
Gett: The Trial of Viviane Amsalem (2015)         200
Kumiko, The Treasure Hunter (2015)                174
dtype: int64
Out[36]:
100
#will actually return a Series object with a boolean value for each film
series_custom > 50
series_greater_than_50 = series_custom[series_custom > 50]

criteria_one = series_custom > 50
criteria_two = series_custom < 75
both_criteria = series_custom[criteria_one & criteria_two]
print both_criteria

输出 :

Avengers: Age of Ultron (2015)                                            74
The Water Diviner (2015)                                                  63
Unbroken (2014)                                                           51
Southpaw (2015)                                                           59
Insidious: Chapter 3 (2015)                                               59
The Man From U.N.C.L.E. (2015)                                            68
Run All Night (2015)                                                      60
5 Flights Up (2015)                                                       52
Welcome to Me (2015)                                                      71
Saint Laurent (2015)                                                      51
Maps to the Stars (2015)                                                  60
Pitch Perfect 2 (2015)                                                    67
The Age of Adaline (2015)                                                 54
The DUFF (2015)                                                           71
Ricki and the Flash (2015)                                                64
Unfriended (2015)                                                         60
American Sniper (2015)                                                    72
The Hobbit: The Battle of the Five Armies (2014)                          61
Paper Towns (2015)                                                        55
Big Eyes (2014)                                                           72
Maggie (2015)                                                             54
Focus (2015)                                                              57
The Second Best Exotic Marigold Hotel (2015)                              62
The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)    67
Escobar: Paradise Lost (2015)                                             52
Into the Woods (2014)                                                     71
Inherent Vice (2014)                                                      73
Magic Mike XXL (2015)                                                     62
Woman in Gold (2015)                                                      52
The Last Five Years (2015)                                                60
Jurassic World (2015)                                                     71
Minions (2015)                                                            54
Spare Parts (2015)                                                        52
dtype: int64
#data alignment same index
rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
rt_mean = (rt_critics + rt_users)/2

print(rt_mean)

输出 :

FILM
Avengers: Age of Ultron (2015)                    80.0
Cinderella (2015)                                 82.5
Ant-Man (2015)                                    85.0
Do You Believe? (2015)                            51.0
Hot Tub Time Machine 2 (2015)                     21.0
The Water Diviner (2015)                          62.5
Irrational Man (2015)                             47.5
Top Five (2014)                                   75.0
Shaun the Sheep Movie (2015)                      90.5
Love & Mercy (2015)                               88.0
Far From The Madding Crowd (2015)                 80.5
Black Sea (2015)                                  71.0
Leviathan (2014)                                  89.0
Unbroken (2014)                                   60.5
The Imitation Game (2014)                         91.0
Taken 3 (2015)                                    27.5
Ted 2 (2015)                                      52.0
Southpaw (2015)                                   69.5
Night at the Museum: Secret of the Tomb (2014)    54.0
Pixels (2015)                                     35.5
McFarland, USA (2015)                             84.0
Insidious: Chapter 3 (2015)                       57.5
The Man From U.N.C.L.E. (2015)                    74.0
Run All Night (2015)                              59.5
Trainwreck (2015)                                 79.5
Selma (2014)                                      92.5
Ex Machina (2015)                                 89.0
Still Alice (2015)                                86.5
Wild Tales (2014)                                 94.0
The End of the Tour (2015)                        90.5
                                                  ... 
Clouds of Sils Maria (2015)                       78.0
Testament of Youth (2015)                         80.0
Infinitely Polar Bear (2015)                      78.0
Phoenix (2015)                                    90.0
The Wolfpack (2015)                               78.5
The Stanford Prison Experiment (2015)             85.5
Tangerine (2015)                                  90.5
Magic Mike XXL (2015)                             63.0
Home (2015)                                       55.0
The Wedding Ringer (2015)                         46.5
Woman in Gold (2015)                              66.5
The Last Five Years (2015)                        60.0
Mission: Impossible – Rogue Nation (2015)       91.0
Amy (2015)                                        94.0
Jurassic World (2015)                             76.0
Minions (2015)                                    53.0
Max (2015)                                        54.0
Paul Blart: Mall Cop 2 (2015)                     20.5
The Longest Ride (2015)                           52.0
The Lazarus Effect (2015)                         18.5
The Woman In Black 2 Angel of Death (2015)        23.5
Danny Collins (2015)                              76.0
Spare Parts (2015)                                67.5
Serena (2015)                                     21.5
Inside Out (2015)                                 94.0
Mr. Holmes (2015)                                 82.5
'71 (2015)                                        89.5
Two Days, One Night (2014)                        87.5
Gett: The Trial of Viviane Amsalem (2015)         90.5
Kumiko, The Treasure Hunter (2015)                75.0
dtype: float64
import pandas as pd

输出 : RangeIndex(start=0, stop=146, step=1)

#will return a new DataFrame that is indexed by the values in the specified column 
#and will drop that column from the DataFrame
#without the FILM column dropped 
fandango = pd.read_csv('fandango_score_comparison.csv')
print type(fandango)
fandango_films = fandango.set_index('FILM', drop=False)
#print(fandango_films.index)

输出 : <class 'pandas.core.frame.DataFrame'>

# Slice using either bracket notation or loc[]
fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]

# Specific movie
fandango_films.loc['Kumiko, The Treasure Hunter (2015)']

# Selecting list of movies
movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
fandango_films.loc[movies]

#When selecting multiple rows, a DataFrame is returned, 
#but when selecting an individual row, a Series object is returned instead
#The apply() method in Pandas allows us to specify Python logic
#The apply() method requires you to pass in a vectorized operation 
#that can be applied over each Series object.
import numpy as np

# returns the data types as a Series
types = fandango_films.dtypes
#print types
# filter data types to just floats, index attributes returns just column names
float_columns = types[types.values == 'float64'].index
# use bracket notation to filter columns to just float columns
float_df = fandango_films[float_columns]
#print float_df
# `x` is a Series object representing a column
deviations = float_df.apply(lambda x: np.std(x))

print(deviations)

输出 :

Metacritic_User               1.505529
IMDB                          0.955447
Fandango_Stars                0.538532
Fandango_Ratingvalue          0.501106
RT_norm                       1.503265
RT_user_norm                  0.997787
Metacritic_norm               0.972522
Metacritic_user_nom           0.752765
IMDB_norm                     0.477723
RT_norm_round                 1.509404
RT_user_norm_round            1.003559
Metacritic_norm_round         0.987561
Metacritic_user_norm_round    0.785412
IMDB_norm_round               0.501043
Fandango_Difference           0.152141
dtype: float64
rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
rt_mt_user.apply(lambda x: np.std(x), axis=1)

输出 :

FILM
Avengers: Age of Ultron (2015)                    0.375
Cinderella (2015)                                 0.125
Ant-Man (2015)                                    0.225
Do You Believe? (2015)                            0.925
Hot Tub Time Machine 2 (2015)                     0.150
The Water Diviner (2015)                          0.150
Irrational Man (2015)                             0.575
Top Five (2014)                                   0.100
Shaun the Sheep Movie (2015)                      0.150
Love & Mercy (2015)                               0.050
Far From The Madding Crowd (2015)                 0.050
Black Sea (2015)                                  0.150
Leviathan (2014)                                  0.175
Unbroken (2014)                                   0.125
The Imitation Game (2014)                         0.250
Taken 3 (2015)                                    0.000
Ted 2 (2015)                                      0.175
Southpaw (2015)                                   0.050
Night at the Museum: Secret of the Tomb (2014)    0.000
Pixels (2015)                                     0.025
McFarland, USA (2015)                             0.425
Insidious: Chapter 3 (2015)                       0.325
The Man From U.N.C.L.E. (2015)                    0.025
Run All Night (2015)                              0.350
Trainwreck (2015)                                 0.350
Selma (2014)                                      0.375
Ex Machina (2015)                                 0.175
Still Alice (2015)                                0.175
Wild Tales (2014)                                 0.100
The End of the Tour (2015)                        0.350
                                                  ...  
Clouds of Sils Maria (2015)                       0.100
Testament of Youth (2015)                         0.000
Infinitely Polar Bear (2015)                      0.075
Phoenix (2015)                                    0.025
The Wolfpack (2015)                               0.075
The Stanford Prison Experiment (2015)             0.050
Tangerine (2015)                                  0.325
Magic Mike XXL (2015)                             0.250
Home (2015)                                       0.200
The Wedding Ringer (2015)                         0.825
Woman in Gold (2015)                              0.225
The Last Five Years (2015)                        0.225
Mission: Impossible – Rogue Nation (2015)       0.250
Amy (2015)                                        0.075
Jurassic World (2015)                             0.275
Minions (2015)                                    0.125
Max (2015)                                        0.350
Paul Blart: Mall Cop 2 (2015)                     0.300
The Longest Ride (2015)                           0.625
The Lazarus Effect (2015)                         0.650
The Woman In Black 2 Angel of Death (2015)        0.475
Danny Collins (2015)                              0.100
Spare Parts (2015)                                0.300
Serena (2015)                                     0.700
Inside Out (2015)                                 0.025
Mr. Holmes (2015)                                 0.025
'71 (2015)                                        0.175
Two Days, One Night (2014)                        0.250
Gett: The Trial of Viviane Amsalem (2015)         0.200
Kumiko, The Treasure Hunter (2015)                0.025
dtype: float64

相关文章

网友评论

      本文标题:数据分析处理库pandas

      本文链接:https://www.haomeiwen.com/subject/wbziuftx.html