美文网首页
Python设计模式之策略模式

Python设计模式之策略模式

作者: Yookoe | 来源:发表于2020-02-27 19:59 被阅读0次

    Python 中的设计模式详解之:策略模式

    虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用。《设计模式:可复用面向对象软件的基础》一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”。

    1、策略模式概述

    策略模式:定义一系列算法,把它们一一封装起来,并且使它们之间可以相互替换。此模式让算法的变化不会影响到使用算法的客户。

    电商领域有个使用“策略”模式的经典案例,即根据客户的属性或订单中的商品计算折扣。

    假如一个网店制定了下述折扣规则。

    • 有 1000 或以上积分的顾客,每个订单享 5% 折扣。
    • 同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。
    • 订单中的不同商品达到 10 个或以上,享 7% 折扣。

    简单起见,我们假定一个订单一次只能享用一个折扣。

    UML类图如下:

    策略模式UML类图.png

    Promotion 抽象类提供了不同算法的公共接口,fidelityPromo、BulkPromo 和 LargeOrderPromo 三个子类实现具体的“策略”,具体策略由上下文类的客户选择。

    在这个示例中,实例化订单(Order 类)之前,系统会以某种方式选择一种促销折扣策略,然后把它传给 Order 构造方法。具体怎么选择策略,不在这个模式的职责范围内。(选择策略可以使用工厂模式。)

    2、传统方法实现策略模式:

    from abc import ABC, abstractmethod
    from collections import namedtuple
    
    Customer = namedtuple('Customer', 'name fidelity')
    
    
    class LineItem:
        """订单中单个商品的数量和单价"""
        def __init__(self, product, quantity, price):
            self.product = product
            self.quantity = quantity
            self.price = price
    
        def total(self):
            return self.price * self.quantity
    
    
    class Order:
        """订单"""
        def __init__(self, customer, cart, promotion=None):
            self.customer = customer
            self.cart = list(cart)
            self.promotion = promotion
    
        def total(self):
            if not hasattr(self, '__total'):
                self.__total = sum(item.total() for item in self.cart)
            return self.__total
    
        def due(self):
            if self.promotion is None:
                discount = 0
            else:
                discount = self.promotion.discount(self)
            return self.total() - discount
    
        def __repr__(self):
            fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
            return fmt.format(self.total(), self.due())
    
    
    class Promotion(ABC):  # 策略:抽象基类
        @abstractmethod
        def discount(self, order):
            """返回折扣金额(正值)"""
    
    
    class FidelityPromo(Promotion):  # 第一个具体策略
        """为积分为1000或以上的顾客提供5%折扣"""
        def discount(self, order):
            return order.total() * 0.05 if order.customer.fidelity >= 1000 else 0
    
    
    class BulkItemPromo(Promotion):  # 第二个具体策略
        """单个商品为20个或以上时提供10%折扣"""
        def discount(self, order):
            discount = 0
            for item in order.cart:
                if item.quantity >= 20:
                    discount += item.total() * 0.1
            return discount
    
    
    class LargeOrderPromo(Promotion):  # 第三个具体策略
        """订单中的不同商品达到10个或以上时提供7%折扣"""
        def discount(self, order):
            distinct_items = {item.product for item in order.cart}
            if len(distinct_items) >= 10:
                return order.total() * 0.07
            return 0
    
    
    joe = Customer('John Doe', 0)
    ann = Customer('Ann Smith', 1100)
    
    cart = [LineItem('banana', 4, 0.5),
            LineItem('apple', 10, 1.5),
            LineItem('watermellon', 5, 5.0)]
    
    print('策略一:为积分为1000或以上的顾客提供5%折扣')
    print(Order(joe, cart, FidelityPromo()))
    print(Order(ann, cart, FidelityPromo()))
    
    banana_cart = [LineItem('banana', 30, 0.5),
                   LineItem('apple', 10, 1.5)]
    
    print('策略二:单个商品为20个或以上时提供10%折扣')
    print(Order(joe, banana_cart, BulkItemPromo()))
    
    long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]
    
    print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
    print(Order(joe, long_order, LargeOrderPromo()))
    print(Order(joe, cart, LargeOrderPromo()))
    

    输出:

    策略一:为积分为1000或以上的顾客提供5%折扣
    <订单 总价: 42.00 实付: 42.00>
    <订单 总价: 42.00 实付: 39.90>
    策略二:单个商品为20个或以上时提供10%折扣
    <订单 总价: 30.00 实付: 28.50>
    策略三:订单中的不同商品达到10个或以上时提供7%折扣
    <订单 总价: 10.00 实付: 9.30>
    <订单 总价: 42.00 实付: 42.00>
    

    3、使用函数实现策略模式

    在传统策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,除此之外没有其他任何实例属性。它们看起来像是普通的函数一样。的确如此,在 Python 中,我们可以把具体策略换成了简单的函数,并且去掉策略的抽象类。

    from collections import namedtuple
    
    Customer = namedtuple('Customer', 'name fidelity')
    
    
    class LineItem:
        def __init__(self, product, quantity, price):
            self.product = product
            self.quantity = quantity
            self.price = price
    
        def total(self):
            return self.price * self.quantity
    
    
    class Order:
        def __init__(self, customer, cart, promotion=None):
            self.customer = customer
            self.cart = list(cart)
            self.promotion = promotion
    
        def total(self):
            if not hasattr(self, '__total'):
                self.__total = sum(item.total() for item in self.cart)
            return self.__total
    
        def due(self):
            if self.promotion is None:
                discount = 0
            else:
                discount = self.promotion(self)
            return self.total() - discount
    
        def __repr__(self):
            fmt = '<订单 总价: {:.2f} 实付: {:.2f}>'
            return fmt.format(self.total(), self.due())
    
    
    def fidelity_promo(order):
        """为积分为1000或以上的顾客提供5%折扣"""
        return order.total() * .05 if order.customer.fidelity >= 1000 else 0
    
    
    def bulk_item_promo(order):
        """单个商品为20个或以上时提供10%折扣"""
        discount = 0
        for item in order.cart:
            if item.quantity >= 20:
                discount += item.total() * .1
        return discount
    
    
    def large_order_promo(order):
        """订单中的不同商品达到10个或以上时提供7%折扣"""
        distinct_items = {item.product for item in order.cart}
        if len(distinct_items) >= 10:
            return order.total() * .07
        return 0
    
    
    joe = Customer('John Doe', 0)
    ann = Customer('Ann Smith', 1100)
    
    cart = [LineItem('banana', 4, 0.5),
            LineItem('apple', 10, 1.5),
            LineItem('watermellon', 5, 5.0)]
    
    print('策略一:为积分为1000或以上的顾客提供5%折扣')
    print(Order(joe, cart, fidelity_promo))
    print(Order(ann, cart, fidelity_promo))
    
    banana_cart = [LineItem('banana', 30, 0.5),
                   LineItem('apple', 10, 1.5)]
    
    print('策略二:单个商品为20个或以上时提供10%折扣')
    print(Order(joe, banana_cart, bulk_item_promo))
    
    long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]
    
    print('策略三:订单中的不同商品达到10个或以上时提供7%折扣')
    print(Order(joe, long_order, large_order_promo))
    print(Order(joe, cart, large_order_promo))
    

    其实只要是支持高阶函数的语言,就可以如此实现,例如 C# 中,可以用委托实现。只是如此实现反而使代码变得复杂不易懂。而 Python 中,函数天然就可以当做参数来传递。

    值得注意的是,《设计模式:可复用面向对象软件的基础》一书的作者指出:“策略对象通常是很好的享元。” 享元是可共享的对象,可以同时在多个上下文中使用。共享是推荐的做法,这样不必在每个新的上下文(这里是 Order 实例)中使用相同的策略时不断新建具体策略对象,从而减少消耗。因此,为了避免 [策略模式] 的运行时消耗,可以配合 [享元模式] 一起使用,但这样,代码行数和维护成本会不断攀升。

    在复杂的情况下,需要具体策略维护内部状态时,可能需要把“策略”和“享元”模式结合起来。但是,具体策略一般没有内部状态,只是处理上下文中的数据。此时,一定要使用普通的函数,别去编写只有一个方法的类,再去实现另一个类声明的单函数接口。函数比用户定义的类的实例轻量,而且无需使用“享元”模式,因为各个策略函数在 Python 编译模块时只会创建一次。普通的函数也是“可共享的对象,可以同时在多个上下文中使用”。

    转自 https://juejin.im/post/5cb7de3cf265da039378616d

    相关文章

      网友评论

          本文标题:Python设计模式之策略模式

          本文链接:https://www.haomeiwen.com/subject/wdoxhhtx.html