美文网首页
拉格朗日乘子法的简单数学推导

拉格朗日乘子法的简单数学推导

作者: andyhacker | 来源:发表于2022-08-06 15:17 被阅读0次

    拉格朗日乘子法公式

    结论
    • 原问题

    min f( \mathbf{x}) \\ st. \mathbf{G(x)} = 0 \tag{1}

    • 转换问题
      min\mathbf{F(x)}\tag{2}
      其中
      \mathbf{F(x)} = f( \mathbf{x})+\lambda\mathbf{G(x)}\tag{3}

    推导过程


    一、 隐函数
    1. 将自变量 \mathbf{x} 展开成向量形式
      \mathbf{x}=(x_0, x_1, x_2, ..., x_n)
      则等式 \mathbf{G(x)} = 0存在隐函数使得
      x_0=g(x_1,x_2,x_3, ..., x_n) \tag{4}

      \mathbf{x'}=(x_1,x_2,x_3, ..., x_n) \tag{5}
    2. 隐函数偏导数
      对于等式(方程)\mathbf{G(x)} = 0有式(4)的隐函数,对其两边同时进行求导得
      \frac{\partial {\mathbf{G_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{G}} }{\partial x_1}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_1} = 0 \\ \frac{\partial {\mathbf{G_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{G}} }{\partial x_2}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_2} = 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{G_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{G}} }{\partial x_n}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_n} = 0 \tag{6}
    二、原问题的转换

    原问题(1)结合等式(4)可以等价为
    \begin{align} min\mathbf{F(x)} &= min f(x_0,x_1, x_2,...,x_n)\\ &= minf(g(x_1,x_2,x_3,...,x_n),x_1,x_2,x_3,...x_n)\\ \tag{7}\end{align}
    对式(7)求解,即为
    \frac{\partial {\mathbf{F_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{F}} }{\partial x_1}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_1} = 0 \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{F}} }{\partial x_2}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_2} = 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{F}} }{\partial x_n}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_n} = 0 \tag{8}
    观察(6)式,等式中含有共同项\frac{\partial {\mathbf{G}} }{\partial x_0},式子两侧同除以共同项,可以变换为
    \frac{\partial {{g}} }{\partial x_1} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_1}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \\ \frac{\partial {{g}} }{\partial x_2} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_2}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \\ \ \\ ... \\ \ \\ \frac{\partial {{g}} }{\partial x_n} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_n}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \tag{9}
    (9)式依次带入(8)式,得
    \frac{\partial {\mathbf{F_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{F}} }{\partial x_1}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_1}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_1}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_1}= 0 \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{F}} }{\partial x_2}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_2}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_2}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_2}= 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{F}} }{\partial x_n}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_n}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_n}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_n}= 0 \tag{10}
    \lambda=-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}}\tag{11}
    代入(10)
    \frac{\partial {\mathbf{F}} }{\partial x_1}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_1}= 0 \\ \frac{\partial {\mathbf{F}} }{\partial x_2}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_2}= 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F}} }{\partial x_n}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_n}= 0 \tag{12}
    同时,式(11)可变换为
    \frac{\partial {\mathbf{F}} }{\partial x_0}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_0}= 0 \tag{13}
    结合式(12)(13),即可等价于
    \nabla {\mathbf{F}} +\lambda \nabla {\mathbf{G}}=0 \tag{14}
    意其即为式(3)的最优解

    证毕。
    ©copyright

    相关文章

      网友评论

          本文标题:拉格朗日乘子法的简单数学推导

          本文链接:https://www.haomeiwen.com/subject/wdxvwrtx.html