美文网首页
什么是过拟合,如何避免?

什么是过拟合,如何避免?

作者: 快乐的小飞熊 | 来源:发表于2017-04-30 16:05 被阅读0次

过拟合:训练集上表现很好,但是在测试集上表现很差,泛化性能差。

降低过拟合的方法:
(1)试着寻找最简单的假设
(2)正则化
(3)early stopping
说明:在每一个epoch结束的时候,计算验证集的accurancy,记录到目前为止最
好的交叉验证accuracy,当连续10次epoch没达到最好的准确率的时候,可
以认为accurancy不再提高了。
(4)数据集扩增
(5)dropout
说明:在神经网络中,随机删除一些隐藏层单元。

相关文章

  • 技巧 - 面试考点

    基础知识:1、什么是有监督/无监督算法?2、什么是过拟合/欠拟合,如何避免过拟合?3、什么是交叉验证,什么是bag...

  • 什么是过拟合?如何避免过拟合问题?

    过拟合:所选模型的复杂度比真模型更高;学习时选择的模型所包含的参数过多,对已经数据预测得很好,但是对未知数据预测得...

  • 什么是过拟合,如何避免?

    过拟合:训练集上表现很好,但是在测试集上表现很差,泛化性能差。 降低过拟合的方法:(1)试着寻找最简单的假设(2)...

  • 正则化总结

    正则化的作用 正则化的作用就是用来避免或者减少过拟合现象。关于什么是过拟合什么是欠拟合就不再花费过多篇幅了。 过拟...

  • SVM如何防止过拟合

    SVM如何避免过拟合 过拟合(Overfitting)表现为在训练数据上模型的预测很准,在未知数据上预测很差。过拟...

  • 避免过拟合

    欠拟合和过拟合 欠拟合是指在训练集和测试集(或验证集)上模型效果都不好,一般由于模型能力不足导致;过拟合是指模型在...

  • 过拟合

    总结一下过拟合的现象以及常用的避免过拟合的方法: 过拟合的定义: 过拟合是指学习时选择的模型所包含的参数过多,以至...

  • 过拟合与正则化

    1.什么是过拟合2.如何解决

  • 欠拟合

    欠拟合:模型不能在训练集上获得足够低的误差 欠拟合一般特点:低方差,高偏差; 导致过拟合原因:模型太简单 如何避免...

  • 防止过拟合的基本方法

    过拟合是训练神经网络中常见的问题,本文讨论了产生过拟合的原因,如何发现过拟合,以及简单的解决方法。 发现过拟合问题...

网友评论

      本文标题:什么是过拟合,如何避免?

      本文链接:https://www.haomeiwen.com/subject/weymnttx.html