前言
承接前文,继续来。
在了解 如何计算存放数组table
中的位置 后,所谓 知其然 而 需知其所以然,下面我将讲解为什么要这样计算,即主要解答以下3个问题:
- 为什么不直接采用经过
hashCode()
处理的哈希码 作为 存储数组table
的下标位置? - 为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
- 为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
在回答这3个问题前,请大家记住一个核心思想:
所有处理的根本目的,都是为了提高 存储
key-value
的数组下标位置 的随机性 & 分布均匀性,尽量避免出现hash值冲突。即:对于不同key
,存储的数组下标位置要尽可能不一样
问题1:为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
- 结论:容易出现 哈希码 与 数组大小范围不匹配的情况,即 计算出来的哈希码可能 不在数组大小范围内,从而导致无法匹配存储位置
- 原因描述
- 为了解决 “哈希码与数组大小范围不匹配” 的问题,
HashMap
给出了解决方案:哈希码 与运算(&) (数组长度-1);请继续问题2
问题2:为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
-
结论:根据HashMap的容量大小(数组长度),按需取 哈希码一定数量的低位 作为存储的数组下标位置,从而 解决 “哈希码与数组大小范围不匹配” 的问题
-
具体解决方案描述
问题3:为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
-
结论:加大哈希码低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性 & 均匀性,最终减少Hash冲突
-
具体描述
至此,关于怎么计算 key-value
值存储在HashMap
数组位置 & 为什么要这么计算,讲解完毕。
分析4:若对应的key已存在,则 使用 新value 替换 旧value
注:当发生
Hash
冲突时,为了保证 键key
的唯一性哈希表并不会马上在链表中插入新数据,而是先查找该key
是否已存在,若已存在,则替换即可
/**
* 函数使用原型
*/
// 2\. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //并返回旧的value
}
}
modCount++;
// 2.2 若 该key不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
return null;
- 此处无复杂的源码分析,但此处的分析点主要有2个:替换流程 &
key
是否存在(即key
值的对比)
分析1:替换流程
具体如下图:
image分析2:key
值的比较
采用 equals()
或 "==" 进行比较,下面给出其介绍 & 与 “==”
使用的对比
分析5:若对应的key不存在,则将该“key-value”添加到数组table的对应位置中
- 函数源码分析如下
/**
* 函数使用原型
*/
// 2\. 判断该key对应的值是否已存在
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若该key对应的值已存在,则用新的value取代旧的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 2.2 若 该key对应的值不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
/**
* 源码分析:addEntry(hash, key, value, i)
* 作用:添加键值对(Entry )到 HashMap中
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
// 参数3 = 插入数组table的索引位置 = 数组下标
// 1\. 插入前,先判断容量是否足够
// 1.1 若不足够,则进行扩容(2倍)、重新计算Hash值、重新计算存储数组下标
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length); // a. 扩容2倍 --> 分析1
hash = (null != key) ? hash(key) : 0; // b. 重新计算该Key对应的hash值
bucketIndex = indexFor(hash, table.length); // c. 重新计算该Key对应的hash值的存储数组下标位置
}
// 1.2 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中--> 分析2
createEntry(hash, key, value, bucketIndex);
}
/**
* 分析1:resize(2 * table.length)
* 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
*/
void resize(int newCapacity) {
// 1\. 保存旧数组(old table)
Entry[] oldTable = table;
// 2\. 保存旧容量(old capacity ),即数组长度
int oldCapacity = oldTable.length;
// 3\. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4\. 根据新容量(2倍容量)新建1个数组,即新table
Entry[] newTable = new Entry[newCapacity];
// 5\. 将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1
transfer(newTable);
// 6\. 新数组table引用到HashMap的table属性上
table = newTable;
// 7\. 重新设置阈值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
* 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
*/
void transfer(Entry[] newTable) {
// 1\. src引用了旧数组
Entry[] src = table;
// 2\. 获取新数组的大小 = 获取新容量大小
int newCapacity = newTable.length;
// 3\. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
for (int j = 0; j < src.length; j++) {
// 3.1 取得旧数组的每个元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
src[j] = null;
do {
// 3.3 遍历 以该数组元素为首 的链表
// 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
Entry<K,V> next = e.next;
// 3.4 重新计算每个元素的存储位置
int i = indexFor(e.hash, newCapacity);
// 3.5 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
// 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
e.next = newTable[i];
newTable[i] = e;
// 3.6 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
e = next;
} while (e != null);
// 如此不断循环,直到遍历完数组上的所有数据元素
}
}
}
/**
* 分析2:createEntry(hash, key, value, bucketIndex);
* 作用: 若容量足够,则创建1个新的数组元素(Entry) 并放入到数组中
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
// 1\. 把table中该位置原来的Entry保存
Entry<K,V> e = table[bucketIndex];
// 2\. 在table中该位置新建一个Entry:将原头结点位置(数组上)的键值对 放入到(链表)后1个节点中、将需插入的键值对 放入到头结点中(数组上)-> 从而形成链表
// 即 在插入元素时,是在链表头插入的,table中的每个位置永远只保存最新插入的Entry,旧的Entry则放入到链表中(即 解决Hash冲突)
table[bucketIndex] = new Entry<>(hash, key, value, e);
// 3\. 哈希表的键值对数量计数增加
size++;
}
此处有2点需特别注意:键值对的添加方式 & 扩容机制
1. 键值对的添加方式:单链表的头插法
- 即 将该位置(数组上)原来的数据放在该位置的(链表)下1个节点中(next)、在该位置(数组上)放入需插入的数据-> 从而形成链表
- 如下示意图
2. 扩容机制
- 具体流程如下:
- 扩容过程中的转移数据示意图如下
在扩容resize()
过程中,在将旧数组上的数据 转移到 新数组上时,转移操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况
设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1
- 此时若(多线程)并发执行 put()操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop),即 死锁的状态 = 线程不安全
下面最后1节会对上述情况详细说明
总结
- 向
HashMap
添加数据(成对 放入 键 - 值对)的全流程
-
示意图
image
至此,关于 “向 HashMap
添加数据(成对 放入 键 - 值对)“讲解完毕
步骤3:从HashMap中获取数据
- 假如理解了上述
put()
函数的原理,那么get()
函数非常好理解,因为二者的过程原理几乎相同 -
get()
函数的流程如下:
- 具体源码分析如下
/**
* 函数原型
* 作用:根据键key,向HashMap获取对应的值
*/
map.get(key);
/**
* 源码分析
*/
public V get(Object key) {
// 1\. 当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
if (key == null)
return getForNullKey(); --> 分析1
// 2\. 当key ≠ null时,去获得对应值 -->分析2
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
/**
* 分析1:getForNullKey()
* 作用:当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
*/
private V getForNullKey() {
if (size == 0) {
return null;
}
// 遍历以table[0]为头结点的链表,寻找 key==null 对应的值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
// 从table[0]中取key==null的value值
if (e.key == null)
return e.value;
}
return null;
}
/**
* 分析2:getEntry(key)
* 作用:当key ≠ null时,去获得对应值
*/
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
// 1\. 根据key值,通过hash()计算出对应的hash值
int hash = (key == null) ? 0 : hash(key);
// 2\. 根据hash值计算出对应的数组下标
// 3\. 遍历 以该数组下标的数组元素为头结点的链表所有节点,寻找该key对应的值
for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
// 若 hash值 & key 相等,则证明该Entry = 我们要的键值对
// 通过equals()判断key是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
至此,关于 “向 HashMap
获取数据 “讲解完毕
步骤4:对HashMap的其他操作
即 对其余使用
API
(函数、方法)的源码分析
-
HashMap
除了核心的put()
、get()
函数,还有以下主要使用的函数方法
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
- 下面将简单介绍上面几个函数的源码分析
/**
* 函数:isEmpty()
* 作用:判断HashMap是否为空,即无键值对;size == 0时 表示为 空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 函数:size()
* 作用:返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
*/
public int size() {
return size;
}
/**
* 函数:clear()
* 作用:清空哈希表,即删除所有键值对
* 原理:将数组table中存储的Entry全部置为null、size置为0
*/
public void clear() {
modCount++;
Arrays.fill(table, null);
size = 0;
}
/**
* 函数:putAll(Map<? extends K, ? extends V> m)
* 作用:将指定Map中的键值对 复制到 此Map中
* 原理:类似Put函数
*/
public void putAll(Map<? extends K, ? extends V> m) {
// 1\. 统计需复制多少个键值对
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 2\. 若table还没初始化,先用刚刚统计的复制数去初始化table
if (table == EMPTY_TABLE) {
inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
}
// 3\. 若需复制的数目 > 阈值,则需先扩容
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 4\. 开始复制(实际上不断调用Put函数插入)
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* 函数:remove(Object key)
* 作用:删除该键值对
*/
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
// 1\. 计算hash值
int hash = (key == null) ? 0 : hash(key);
// 2\. 计算存储的数组下标位置
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
// 若删除的是table数组中的元素(即链表的头结点)
// 则删除操作 = 将头结点的next引用存入table[i]中
if (prev == e)
table[i] = next;
//否则 将以table[i]为头结点的链表中,当前Entry的前1个Entry中的next 设置为 当前Entry的next(即删除当前Entry = 直接跳过当前Entry)
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
/**
* 函数:containsKey(Object key)
* 作用:判断是否存在该键的键值对;是 则返回true
* 原理:调用get(),判断是否为Null
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* 函数:containsValue(Object value)
* 作用:判断是否存在该值的键值对;是 则返回true
*/
public boolean containsValue(Object value) {
// 若value为空,则调用containsNullValue()
if (value == null)
return containsNullValue();
// 若value不为空,则遍历链表中的每个Entry,通过equals()比较values 判断是否存在
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;//返回true
return false;
}
// value为空时调用的方法
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
至此,关于HashMap
的底层原理 & 主要使用API
(函数、方法)讲解完毕。
6. 源码总结
下面,用3个图总结整个源码内容:
总结内容 = 数据结构、主要参数、添加 & 查询数据流程、扩容机制
-
数据结构 & 主要参数
image -
添加 & 查询数据流程
image -
扩容机制
image
7. 与 JDK 1.8
的区别
HashMap
的实现在 JDK 1.7
和 JDK 1.8
差别较大,具体区别如下
JDK 1.8
的优化目的主要是:减少Hash
冲突 & 提高哈希表的存、取效率;关于JDK 1.8
中HashMap
的源码解析请看文章:Java源码分析:关于 HashMap 1.8 的重大更新
7.1 数据结构
image7.2 获取数据时(获取数据 类似)
image7.3 扩容机制
image8. 额外补充:关于HashMap的其他问题
- 有几个小问题需要在此补充
- 具体如下
8.1 哈希表如何解决Hash冲突
image8.2 为什么HashMap具备下述特点:键-值(key-value)都允许为空、线程不安全、不保证有序、存储位置随时间变化
- 具体解答如下
-
下面主要讲解
HashMap
线程不安全的其中一个重要原因:多线程下容易出现resize()
死循环
本质 = 并发 执行put()
操作导致触发 扩容行为,从而导致 环形链表,使得在获取数据遍历链表时形成死循环,即Infinite Loop
-
先看扩容的源码分析
resize()
关于resize()的源码分析已在上文详细分析,此处仅作重点分析:transfer()
/**
* 源码分析:resize(2 * table.length)
* 作用:当容量不足时(容量 > 阈值),则扩容(扩到2倍)
*/
void resize(int newCapacity) {
// 1\. 保存旧数组(old table)
Entry[] oldTable = table;
// 2\. 保存旧容量(old capacity ),即数组长度
int oldCapacity = oldTable.length;
// 3\. 若旧容量已经是系统默认最大容量了,那么将阈值设置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4\. 根据新容量(2倍容量)新建1个数组,即新table
Entry[] newTable = new Entry[newCapacity];
// 5\. (重点分析)将旧数组上的数据(键值对)转移到新table中,从而完成扩容 ->>分析1.1
transfer(newTable);
// 6\. 新数组table引用到HashMap的table属性上
table = newTable;
// 7\. 重新设置阈值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 作用:将旧数组上的数据(键值对)转移到新table中,从而完成扩容
* 过程:按旧链表的正序遍历链表、在新链表的头部依次插入
*/
void transfer(Entry[] newTable) {
// 1\. src引用了旧数组
Entry[] src = table;
// 2\. 获取新数组的大小 = 获取新容量大小
int newCapacity = newTable.length;
// 3\. 通过遍历 旧数组,将旧数组上的数据(键值对)转移到新数组中
for (int j = 0; j < src.length; j++) {
// 3.1 取得旧数组的每个元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 释放旧数组的对象引用(for循环后,旧数组不再引用任何对象)
src[j] = null;
do {
// 3.3 遍历 以该数组元素为首 的链表
// 注:转移链表时,因是单链表,故要保存下1个结点,否则转移后链表会断开
Entry<K,V> next = e.next;
// 3.3 重新计算每个元素的存储位置
int i = indexFor(e.hash, newCapacity);
// 3.4 将元素放在数组上:采用单链表的头插入方式 = 在链表头上存放数据 = 将数组位置的原有数据放在后1个指针、将需放入的数据放到数组位置中
// 即 扩容后,可能出现逆序:按旧链表的正序遍历链表、在新链表的头部依次插入
e.next = newTable[i];
newTable[i] = e;
// 访问下1个Entry链上的元素,如此不断循环,直到遍历完该链表上的所有节点
e = next;
} while (e != null);
// 如此不断循环,直到遍历完数组上的所有数据元素
}
}
}
从上面可看出:在扩容resize()
过程中,在将旧数组上的数据 转移到 新数组上时,转移数据操作 = 按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况
设重新计算存储位置后不变,即扩容前 = 1->2->3,扩容后 = 3->2->1
- 此时若(多线程)并发执行
put()
操作,一旦出现扩容情况,则 容易出现 环形链表,从而在获取数据、遍历链表时 形成死循环(Infinite Loop
),即 死锁的状态,具体请看下图:
初始状态、步骤1、步骤2
image image image注:由于 JDK 1.8
转移数据操作 = 按旧链表的正序遍历链表、在新链表的尾部依次插入,所以不会出现链表 逆序、倒置的情况,故不容易出现环形链表的情况。
但
JDK 1.8
还是线程不安全,因为 无加同步锁保护
8.3 为什么 HashMap 中 String、Integer 这样的包装类适合作为 key 键
image8.4 HashMap 中的 key
若 Object
类型, 则需实现哪些方法?
image
至此,关于HashMap
的所有知识讲解完毕。
作者:Carson_Ho
链接:https://www.jianshu.com/p/e5c8a814c0ca
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
网友评论