美文网首页
Elasticsearch object nested join

Elasticsearch object nested join

作者: 月伴沧海 | 来源:发表于2021-04-27 22:06 被阅读0次

Object 类型

在设计索引mapping时,在某些业务下,需要设计的对象中包含对象,俗称内部对象,此时就可以使用Object类型来存储对象.
以下定义了店铺对象,包含店铺名称、店铺编码、供应商信息,另外供应商信息中又包含供应商编码、供应商名称。同时供应商信息还包含自身的对象属性所在区域,所在区域又包含省和市,这种定义才能满足查询店铺信息、查询供应商所有店铺信息,以及查询某地区的所有店铺信息等等场景。

#定义mapping
PUT my_shop_0425
{
  "settings": {
    "index": {
      "number_of_shards": 1,
      "number_of_replicas": 1
    }
  },
  "mappings": {
    "properties": {
      "shopName": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "shopCode": {
        "type": "keyword"
      },
      "supplier": {
        "properties": {
          "supplier_code": {
            "type": "keyword"
          },
          "supplier_name": {
            "type": "text",
            "analyzer": "ik_smart"
          },
          "area": {
            "properties": {
              "province": {
                "type": "keyword"
              },
              "city": {
                "type": "keyword"
              }
            }
          }
        }
      }
    }
  }
}
#插入测试数据
POST my_shop_0425/_bulk
{"index":{"_id":1}}
{"shopName":"苹果热销店铺","shopCode":"sc001","supplier":{"supplier_code":"001","supplier_name":"南京农村电商领导者","area":{"province":"江苏省","city":"南京市"}}}
{"index":{"_id":2}}
{"shopName":"美的热销店铺","shopCode":"sc002","supplier":{"supplier_code":"001","supplier_name":"南京农村电商领导者","area":{"province":"江苏省","city":"南京市"}}}
{"index":{"_id":3}}
{"shopName":"金沙酒热销店铺","shopCode":"sc003","supplier":{"supplier_code":"002","supplier_name":"山东农村电商领导者","area":{"province":"江苏省","city":"南京市"}}}
{"index":{"_id":4}}
{"shopName":"华为热销店铺","shopCode":"sc004","supplier":{"supplier_code":"002","supplier_name":"山东农村电商领导者","area":{"province":"山东省","city":"青岛市"}}}

2家供应商
南京农村电商领导者 店铺:苹果热销店铺+美的热销店铺
山东农村电商领导者 店铺:金沙酒热销店铺+华为热销店铺

查询供应商001对应的所有店铺:

POST my_shop_0425/_search
{
  "query": {
    "match": {
      "supplier.supplier_code": "001"
    }
  }
}
#返回
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.6931471,
    "hits" : [
      {
        "_index" : "my_shop_0425",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.6931471,
        "_source" : {
          "shopName" : "苹果热销店铺",
          "shopCode" : "sc001",
          "supplier" : {
            "supplier_code" : "001",
            "supplier_name" : "南京农村电商领导者",
            "area" : {
              "province" : "江苏省",
              "city" : "南京市"
            }
          }
        }
      },
      {
        "_index" : "my_shop_0425",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.6931471,
        "_source" : {
          "shopName" : "美的热销店铺",
          "shopCode" : "sc002",
          "supplier" : {
            "supplier_code" : "001",
            "supplier_name" : "南京农村电商领导者",
            "area" : {
              "province" : "江苏省",
              "city" : "南京市"
            }
          }
        }
      }
    ]
  }
}

#查询销售区域在南京的所有店铺
#查询销售区域在南京的所有店铺
POST my_shop_0425/_search
{
  "query": {
    "match": {
      "supplier.area.city": "南京市"
    }
  }
}
#返回
{
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 0.35667494,
    "hits" : [
      {
        "_index" : "my_shop_0425",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.35667494,
        "_source" : {
          "shopName" : "苹果热销店铺",
          "shopCode" : "sc001",
          "supplier" : {
            "supplier_code" : "001",
            "supplier_name" : "南京农村电商领导者",
            "area" : {
              "province" : "江苏省",
              "city" : "南京市"
            }
          }
        }
      },
      {
        "_index" : "my_shop_0425",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.35667494,
        "_source" : {
          "shopName" : "美的热销店铺",
          "shopCode" : "sc002",
          "supplier" : {
            "supplier_code" : "001",
            "supplier_name" : "南京农村电商领导者",
            "area" : {
              "province" : "江苏省",
              "city" : "南京市"
            }
          }
        }
      },
      {
        "_index" : "my_shop_0425",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.35667494,
        "_source" : {
          "shopName" : "金沙酒热销店铺",
          "shopCode" : "sc003",
          "supplier" : {
            "supplier_code" : "002",
            "supplier_name" : "山东农村电商领导者",
            "area" : {
              "province" : "江苏省",
              "city" : "南京市"
            }
          }
        }
      }
    ]
  }
}

Join 类型

Join 类型是一种特殊的类型,类似父子结构,一个子文档只能由一个父文档,一个父文档可以有多个子文档。

#定义索引,my_goods_sale为售卖的上信息,my_goods_comment为商品的评价信息
PUT my_goods_hot_sale
{
  "mappings": {
    "properties": {
      "my_id": {
        "type": "keyword"
      },
      "my_join_field": { 
        "type": "join",
        "relations": {
          "my_goods_sale": "my_goods_comment" 
        }
      }
    }
  }
}
#添加商品售卖ID为1的信息
PUT my_goods_hot_sale/_doc/1?refresh
{
  "my_id": "1",
  "text": "This is a my_goods_sale",
  "my_join_field": {
    "name": "my_goods_sale" 
  }
}
#添加商品售卖ID为2的信息
PUT my_goods_hot_sale/_doc/2?refresh
{
  "my_id": "2",
  "text": "This is another my_goods_sale",
  "my_join_field": {
    "name": "my_goods_sale"
  }
}
#添加商品售卖的评价3,父商品为1
PUT my_goods_hot_sale/_doc/3?routing=1&refresh
{
  "my_id": "3",
  "text": "This is an comment",
  "my_join_field": {
    "name": "my_goods_comment", 
    "parent": "1" 
  }
}
#添加商品售卖的评价4,父商品为1
PUT my_goods_hot_sale/_doc/4?routing=1&refresh
{
  "my_id": "4",
  "text": "This is another comment",
  "my_join_field": {
    "name": "my_goods_comment",
    "parent": "1"
  }
}
  • 根据父文档查询子文档
GET my_goods_hot_sale/_search
{
  "query": {
    "has_parent": {
      "parent_type": "my_goods_sale",
      "query": {
        "match": {
          "text": "my_goods_sale"
        }
      }
    }
  }
}
  • 根据子文档查询父文档
GET my_goods_hot_sale/_search
{
  "query": {
    "has_child": {
      "type": "my_goods_comment",
      "query": {
        "match_all": {}
      }
    }
  }
}

Nested 类型

nested 是 object 的专用版本,允许对象数组以可以彼此独立查询的方式进行索引。
ES 中其实是没有内部对象的概念,因此它将对象层次结构简化为字段名称和值,以列表的形式展现。
首先来比较 nester 与 parent/child 以及 Object 的区别


对比.png

以 B2B 电商行业的实际业务场景来举例说明,2B 行业的交易具有一定封闭性,只有签署合同、经常往来交易的会员往往有更高资格的交易权、议价权。
定义商品索引,其中 groupPrice 标识分组价对象,对象里面包含了 boxLevelPrice 分组价格、level 分组级别,当前端业务线搜索时,传入用户所在组级别,即可查询对应的价格。为了便于区分我们先定义为 Object 类型来观察下现象:

定义分组为 Object 类型

PUT goods_info_object
{
  "mappings": {
    "properties": {
      "goodsName": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "skuCode": {
        "type": "keyword"
      },
      "brandName": {
        "type": "keyword"
      },
      "shopCode": {
        "type": "keyword"
      },
      "publicPrice": {
        "type": "float"
      },
      "groupPrice": {
        "properties": {
          "boxLevelPrice": {
            "type": "keyword"
          },
          "level": {
            "type": "keyword"
          }
        }
      }
    }
  }
}

#插入测试数据
POST goods_info_object/_bulk
{"index":{"_id":1}}
{"goodsName":"美国苹果","skuCode":"skuCode1","brandName":"美国苹果","shopCode":"sc00001","publicPrice":"8388.88","groupPrice":[{"boxLevelPrice":"4888.00","level":"A"},{"boxLevelPrice":"6888.00","level":"B"}]}
{"index":{"_id":2}}
{"goodsName":"山东苹果","skuCode":"skuCode2","brandName":"山东苹果","shopCode":"sc00001","publicPrice":"7388.88","groupPrice":[{"boxLevelPrice":"5888.00","level":"A"},{"boxLevelPrice":"4888.00","level":"B"}]}

#检索A组且价格等于4888.00的商品
POST goods_info_object/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "groupPrice.level": "A"
          }
        },
        {
          "match": {
            "groupPrice.boxLevelPrice": "4888.00"
          }
        }
      ]
    }
  }
}

#返回:
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.45840856,
    "hits" : [
      {
        "_index" : "goods_info_object",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.45840856,
        "_source" : {
          "goodsName" : "美国苹果",
          "skuCode" : "skuCode1",
          "brandName" : "美国苹果",
          "shopCode" : "sc00001",
          "publicPrice" : "8388.88",
          "groupPrice" : [
            {
              "boxLevelPrice" : "4888.00",
              "level" : "A"
            },
            {
              "boxLevelPrice" : "6888.00",
              "level" : "B"
            }
          ]
        }
      },
      {
        "_index" : "goods_info_object",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.45840856,
        "_source" : {
          "goodsName" : "山东苹果",
          "skuCode" : "skuCode2",
          "brandName" : "山东苹果",
          "shopCode" : "sc00001",
          "publicPrice" : "7388.88",
          "groupPrice" : [
            {
              "boxLevelPrice" : "5888.00",
              "level" : "A"
            },
            {
              "boxLevelPrice" : "4888.00",
              "level" : "B"
            }
          ]
        }
      }
    ]
  }
}

显然返回的数据不是我们期望的,这是因为 ES 中将 Object 数组打平了做存储导致

定义分组为 Nested 类型

PUT goods_info_nested
{
  "mappings": {
    "properties": {
      "goodsName": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "skuCode": {
        "type": "keyword"
      },
      "brandName": {
        "type": "keyword"
      },
      "shopCode": {
        "type": "keyword"
      },
      "publicPrice": {
        "type": "float"
      },
      "groupPrice": {
        "type": "nested",
        "properties": {
          "boxLevelPrice": {
            "type": "keyword"
          },
          "level": {
            "type": "keyword"
          }
        }
      }
    }
  }
}

#插入同样的测试数据
POST goods_info_nested/_bulk
{"index":{"_id":1}}
{"goodsName":"美国苹果","skuCode":"skuCode1","brandName":"美国苹果","shopCode":"sc00001","publicPrice":"8388.88","groupPrice":[{"boxLevelPrice":"4888.00","level":"A"},{"boxLevelPrice":"6888.00","level":"B"}]}
{"index":{"_id":2}}
{"goodsName":"山东苹果","skuCode":"skuCode2","brandName":"山东苹果","shopCode":"sc00001","publicPrice":"7388.88","groupPrice":[{"boxLevelPrice":"5888.00","level":"A"},{"boxLevelPrice":"4888.00","level":"B"}]}
#查询
POST goods_info_nested/_search
{
  "query": {
    "nested": {
      "path": "groupPrice",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "groupPrice.level": "A"
              }
            },
            {
              "match": {
                "groupPrice.boxLevelPrice": "4888.00"
              }
            }
          ]
        }
      }
    }
  }
}
#返回:
"hits" : [
      {
        "_index" : "goods_info_nested",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.3862942,
        "_source" : {
          "goodsName" : "美国苹果",
          "skuCode" : "skuCode1",
          "brandName" : "美国苹果",
          "shopCode" : "sc00001",
          "publicPrice" : "8388.88",
          "groupPrice" : [
            {
              "boxLevelPrice" : "4888.00",
              "level" : "A"
            },
            {
              "boxLevelPrice" : "6888.00",
              "level" : "B"
            }
          ]
        }
      }
    ]

返回的是我们期望的,说明 nested 查询生效,解决了嵌套查询的问题

相关文章

网友评论

      本文标题:Elasticsearch object nested join

      本文链接:https://www.haomeiwen.com/subject/wgylrltx.html