问:
有1000亿条记录,每条记录由url,ip,时间组成,设计一个系统能够快速查询以下内容
1.给定url和时间段(精确到分钟)统计url的访问次数
2.给定ip和时间段(精确到分钟)统计ip的访问次数
答:
首先,1000亿条记录全部放到内存肯定不够,那就是分成小文件了,然后整合;
公共的时间段,因为精确到分钟,我们把这每一分钟建成一个小文件,每个小文件肯定会有许多重复的ip,url;
现在统计每个小的文件中url的访问量和ip的访问次数,方法就是建立索引;
(建立索引的目的是为了减少查询次数,但是随着索引级数增多也会造成花更多的时间在建立索引上);
建立url的索引,假如是www.nowcoder.com/question,可以分别给www.nowcoder.com和question建立索引,那么来了一条url,先看一级索引是不是匹配,匹配再看二级索引,相同的话就是我们要的url目标;
ip的索引也是一样,ip分成4段建立索引;
所以这里影响效率的就是在索引建立这块,索引建立好那就是查询的事了的,就会变得非常快。
假定给定了某个时间段,找出url的访问量,那么先找到给定的时间段,对应着刚开始分割的小的文件(每一个分钟)中搜索,通过索引找到相同的url之后,开始统计,直到搜索完所有的给定时间段内的所有的小的文件;
求ip的访问次数也是一样,按照给定的时间段,找到对应的小的文件,通过索引找到相同的ip后统计,直到搜索完了给定时间段内的所有的小的文件。
问:
海量数据处理 - 10亿个数中找出最大的10000个数(top K问题)
答:
先拿10000个数建堆,然后一次添加剩余元素,如果大于堆顶的数(10000中最小的),将这个数替换堆顶,并调整结构使之仍然是一个最小堆,这样,遍历完后,堆中的10000个数就是所需的最大的10000个。建堆时间复杂度是O(mlogm),算法的时间复杂度为O(nmlogm)(n为10亿,m为10000)。
优化的方法:可以把所有10亿个数据分组存放,比如分别放在1000个文件中。这样处理就可以分别在每个文件的10^6个数据中找出最大的10000个数,合并到一起在再找出最终的结果。
以上就是面试时简单提到的内容,下面整理一下这方面的问题:
top K问题
在大规模数据处理中,经常会遇到的一类问题:在海量数据中找出出现频率最好的前k个数,或者从海量数据中找出最大的前k个数,这类问题通常被称为top K问题。例如,在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载最高的前10首歌等。
针对top K类问题,通常比较好的方案是分治+Trie树/hash+小顶堆(就是上面提到的最小堆),即先将数据集按照Hash方法分解成多个小数据集,然后使用Trie树活着Hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出现频率最高的前K个数,最后在所有top K中求出最终的top K。
网友评论