美文网首页
Pytorch学习笔记(4) Cifar分类模型实战

Pytorch学习笔记(4) Cifar分类模型实战

作者: 银色尘埃010 | 来源:发表于2020-03-25 16:54 被阅读0次

训练一个分类器

我们已经知道了:

  • 如何定义一个模型: torch.nn
  • 如何计算损失: loss = nn.CrossEntropyLoss()
  • 如何更新参数: optimizer = nn.optim.SGD(net.parameters(), lr = 0.0001, momentum=0.9)

关于数据

一般来说,当你需要去处理 image、text、audio 或者 video数据的时候,可以通过Python包加载这些数据,转化为numpy类型的数据。然后将numpy类型的数据转化为 torch.***Tensor

  • 对于图像,常用的有:Pillow,OpenCV
  • 对于语音,常用的有:scipy, libosa
  • 对于文本,常用的有:NLTK, SpaCy

Pytorch提供了处理图像数据的工具包 torchvision,提供了常见数据集(Imagenet, CIFAR10, MNIST)的数据加载函数,以及数据转化函数,封装在 torchvision.datasetstorch.utils.data.DataLoader之中。

这为我们提供了很大的便利性,同时避免了重复写重复的代码。

使用CIFAR10数据集,图片数据包含以下类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。图片尺寸为 (3,32,32)。

image.png

训练一个图片分类器

1、加载并处理CIFAR10数据

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 输出
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting ./data/cifar-10-python.tar.gz to ./data
Files already downloaded and verified

显示几张图片

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
显示
horse  frog horse  bird

2、定义卷积神经网络

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

3、定义损失函数和优化器

import torch.optim as optim

criterion = nn.CrossEntropyLoss() # 多分类器交叉熵损失函数 包含了
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # SGD梯度下降

4、训练神经网络

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 输出
[1,  2000] loss: 2.229
[1,  4000] loss: 1.877
[1,  6000] loss: 1.678
[1,  8000] loss: 1.576
[1, 10000] loss: 1.502
[1, 12000] loss: 1.476
[2,  2000] loss: 1.381
[2,  4000] loss: 1.370
[2,  6000] loss: 1.344
[2,  8000] loss: 1.326
[2, 10000] loss: 1.324
[2, 12000] loss: 1.294
Finished Training
  • 快速保存模型
PATH = './cifar_net.p'
torch.save(net.state_dict(), PATH)

5、在测试集上测试网络

让我们看看分类模型是否有效
输出GroundTruth

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
image.png
  • 加载模型
net = Net()
net.load_state_dict(torch.load(PATH))

模型加载完成,看看模型是否有效

outputs = net(images)

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

结果看起来很不错
看看在整个数据集上表现如何

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

# 输出
Accuracy of the network on the 10000 test images: 54 %

考虑到我们一个有10类,随记猜测的准确率在10% ,目前54%的准确LV看起来确实很不错,我们的神经网络学到了一些特征。
我们看看不同的类别的准确率,也可以使用sklearn的混淆矩阵,来评估效果。

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

# 输出
Accuracy of plane : 66 %
Accuracy of   car : 61 %
Accuracy of  bird : 27 %
Accuracy of   cat : 24 %
Accuracy of  deer : 51 %
Accuracy of   dog : 41 %
Accuracy of  frog : 70 %
Accuracy of horse : 65 %
Accuracy of  ship : 61 %
Accuracy of truck : 70 %

目前我们已经构造了一个分类器,那么接下来我们需要干什么呢?
尝试使用GPU进行处理。

6、在GPU上进行训练

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)

然后将模型参数和训练数据转化为CUDA tensors

# 模型参数转化为CUDA Tensor
net.to(device)

# 将数据转化为CUDA tensors
inputs, labels = data[0].to(device), data[1].to(device)

相关文章

网友评论

      本文标题:Pytorch学习笔记(4) Cifar分类模型实战

      本文链接:https://www.haomeiwen.com/subject/wijudhtx.html