美文网首页SQL数据库学习
pyecharts折线图进阶篇

pyecharts折线图进阶篇

作者: 践行数据分析 | 来源:发表于2021-06-22 16:04 被阅读0次

    1.基本折线图

    import   pyecharts.options   as    opts

    from    pyecharts.charts    import  Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y=[100,200,300,400,500,400,300]

    line=(

    Line()

    .set_global_opts(

    tooltip_opts=opts.TooltipOpts(is_show=False),

    xaxis_opts=opts.AxisOpts(type_="category"),

    yaxis_opts=opts.AxisOpts(

    type_="value",

    axistick_opts=opts.AxisTickOpts(is_show=True),

    splitline_opts=opts.SplitLineOpts(is_show=True),

    ),

    )

    .add_xaxis(xaxis_data=x)

    .add_yaxis(

    series_name="基本折线图",

    y_axis=y,

    symbol="emptyCircle",

    is_symbol_show=True,

    label_opts=opts.LabelOpts(is_show=False),

    )

    )

    line.render_notebook()

    series_name:图形名称

     y_axis:数据 

    symbol:标记的图形,

    pyecharts提供的类型包括'circle','rect','roundRect','triangle','diamond','pin','arrow','none',也可以通过'image://url'设置为图片,其中 URL 为图片的链接。is_symbol_show:是否显示 symbol

    2.连接空数据(折线图)

    有时候我们要分析的数据存在空缺值,需要进行处理才能画出折线图

    import   pyecharts.options    as   opts

    from    pyecharts.charts   import   Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y=[100,200,300,400,None,400,300]

    line=(

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(

    series_name="连接空数据(折线图)",

    y_axis=y,

    is_connect_nones=True

    )

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))

    )

    line.render_notebook()

    3.多条折线重叠

    import    pyecharts.options   as   opts

    from    pyecharts.charts    import   Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y1=[100,200,300,400,100,400,300]

    y2=[200,300,200,100,200,300,400]

    line=(

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True)

    .add_yaxis(series_name="y2线",y_axis=y2)

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

    )

    line.render_notebook()

    4.平滑曲线折线图

    import   pyecharts.options   as   opts

    from   pyecharts.charts   import   Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y1=[100,200,300,400,100,400,300]

    y2=[200,300,200,100,200,300,400]

    line=(

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(series_name="y1线",y_axis=y1, is_smooth=True)

    .add_yaxis(series_name="y2线",y_axis=y2, is_smooth=True)

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

    )

    line.render_notebook()

    is_smooth:平滑曲线标志

    5.阶梯图

    import   pyecharts.options   as   opts

    from    pyecharts.charts   import   Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y1=[100,200,300,400,100,400,300]

    line=(

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(series_name="y1线",y_axis=y1, is_step=True)

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图"))

    )

    line.render_notebook()

    is_step:阶梯图参数

    6.变换折线的样式

    import   pyecharts.options   as   opts

    from   pyecharts.charts   import   Line

    from    pyecharts.faker   import   Faker

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y1=[100,200,300,400,100,400,300]

    line = (

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(

    "y1",

    y1,

    symbol="triangle",

    symbol_size=30,

    linestyle_opts=opts.LineStyleOpts(color="red", width=4, type_="dashed"),

    itemstyle_opts=opts.ItemStyleOpts(

    border_width=3, border_color="yellow", color="blue"

    ),

    )

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-ItemStyle"))

    )

    line.render_notebook()

    linestyle_opts:折线样式配置color设置颜色,width设置宽度type设置类型,有'solid','dashed','dotted'三种类型 itemstyle_opts:图元样式配置,border_width设置描边宽度,border_color设置描边颜色,color设置纹理填充颜色

    7.折线面积图

    import   pyecharts.options  as   opts

    from   pyecharts.charts   import   Line

    x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

    y1=[100,200,300,400,100,400,300]

    y2=[200,300,200,100,200,300,400]

    line=(

    Line()

    .add_xaxis(xaxis_data=x)

    .add_yaxis(series_name="y1线",y_axis=y1,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))

    .add_yaxis(series_name="y2线",y_axis=y2,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))

    .set_global_opts(title_opts=opts.TitleOpts(title="Line-多折线重叠"))

    )

    line.render_notebook()

    8.双横坐标折线图

    import    pyecharts.options   as   opts

    from    pyecharts.charts   import   Line

    from    pyecharts.commons.utils   import   JsCode

    js_formatter ="""function (params) {

    console.log(params);

    return '降水量  ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : '');

    }"""

    line=(

    Line()

    .add_xaxis(

    xaxis_data=[

    "2016-1",

    "2016-2",

    "2016-3",

    "2016-4",

    "2016-5",

    "2016-6",

    "2016-7",

    "2016-8",

    "2016-9",

    "2016-10",

    "2016-11",

    "2016-12",

    ]

    )

    .extend_axis(

    xaxis_data=[

    "2015-1",

    "2015-2",

    "2015-3",

    "2015-4",

    "2015-5",

    "2015-6",

    "2015-7",

    "2015-8",

    "2015-9",

    "2015-10",

    "2015-11",

    "2015-12",

    ],

    xaxis=opts.AxisOpts(

    type_="category",

    axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

    axisline_opts=opts.AxisLineOpts(

    is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1")

    ),

    axispointer_opts=opts.AxisPointerOpts(

    is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

    ),

    ),

    )

    .add_yaxis(

    series_name="2015 降水量",

    is_smooth=True,

    symbol="emptyCircle",

    is_symbol_show=False,

    color="#d14a61",

    y_axis=[2.6,5.9,9.0,26.4,28.7,70.7,175.6,182.2,48.7,18.8,6.0,2.3],

    label_opts=opts.LabelOpts(is_show=False),

    linestyle_opts=opts.LineStyleOpts(width=2),

    )

    .add_yaxis(

    series_name="2016 降水量",

    is_smooth=True,

    symbol="emptyCircle",

    is_symbol_show=False,

    color="#6e9ef1",

    y_axis=[3.9,5.9,11.1,18.7,48.3,69.2,231.6,46.6,55.4,18.4,10.3,0.7],

    label_opts=opts.LabelOpts(is_show=False),

    linestyle_opts=opts.LineStyleOpts(width=2),

    )

    .set_global_opts(

    legend_opts=opts.LegendOpts(),

    tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"),

    xaxis_opts=opts.AxisOpts(

    type_="category",

    axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

    axisline_opts=opts.AxisLineOpts(

    is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61")

    ),

    axispointer_opts=opts.AxisPointerOpts(

    is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

    ),

    ),

    yaxis_opts=opts.AxisOpts(

    type_="value",

    splitline_opts=opts.SplitLineOpts(

    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)

    ),

    ),

    )

    )

    line.render_notebook()

    9.用电量随时间变化

    import   pyecharts.options   as   opts

    from   pyecharts.charts   import   Line

    x_data = ["00:00","01:15","02:30","03:45","05:00","06:15","07:30","08:45","10:00","11:15","12:30","13:45","15:00","16:15","17:30","18:45","20:00","21:15","22:30","23:45",]

    y_data = [300,280,250,260,270,300,550,500,400,390,380,390,400,500,600,750,800,700,600,400,]

    line=(

    Line()

    .add_xaxis(xaxis_data=x_data)

    .add_yaxis(

    series_name="用电量",

    y_axis=y_data,

    is_smooth=True,

    label_opts=opts.LabelOpts(is_show=False),

    linestyle_opts=opts.LineStyleOpts(width=2),

    )

    .set_global_opts(

    title_opts=opts.TitleOpts(title="一天用电量分布", subtitle="纯属虚构"),

    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),

    xaxis_opts=opts.AxisOpts(boundary_gap=False),

    yaxis_opts=opts.AxisOpts(

    axislabel_opts=opts.LabelOpts(formatter="{value} W"),

    splitline_opts=opts.SplitLineOpts(is_show=True),

    ),

    visualmap_opts=opts.VisualMapOpts(

    is_piecewise=True,

    dimension=0,

    pieces=[

    {"lte":6,"color":"green"},

    {"gt":6,"lte":8,"color":"red"},

    {"gt":8,"lte":14,"color":"yellow"},

    {"gt":14,"lte":17,"color":"red"},

    {"gt":17,"color":"green"},

    ],

    pos_right=0,

    pos_bottom=100

    ),

    )

    .set_series_opts(

    markarea_opts=opts.MarkAreaOpts(

    data=[

    opts.MarkAreaItem(name="早高峰", x=("07:30","10:00")),

    opts.MarkAreaItem(name="晚高峰", x=("17:30","21:15")),

    ]

    )

    )

    )

    line.render_notebook()

    这里给大家介绍几个关键参数:

    ①visualmap_opts:视觉映射配置项,可以将折线分段并设置标签(is_piecewise),将不同段设置颜色(pieces);

    ②markarea_opts:标记区域配置项,data参数可以设置标记区域名称和位置。

    相关文章

      网友评论

        本文标题:pyecharts折线图进阶篇

        本文链接:https://www.haomeiwen.com/subject/wijuuktx.html