摘要:Spark SQL
,谓词下推
,映射下推
,列裁剪
谓词下推 Predicate PushDown
谓词下推的目的:将过滤条件尽可能地下沉到数据源端
谓词,用来描述或判定客体性质、特征或者客体之间关系的词项,英文翻译为predicate
,而谓词下推的英文Predicate Pushdown
中的谓词指返回bool值
即true和false的函数,或是隐式转换为bool的函数。如SQL中的谓词主要有 like
、between
、is null
、in
、=
、!=
等,再比如Spark SQL中的filter
算子等。
谓词下推的含义为将过滤表达式尽可能移动至靠近数据源的位置,以使真正执行时能直接跳过无关的数据,一般的数据库或查询系统都支持谓词下推。
列裁剪 Column Pruning 和 映射下推 Project PushDown
列裁剪和映射下推的目的:过滤掉查询不需要使用到的列
列裁剪ColumnPruning 指把那些查询不需要的字段过滤掉
,使得扫描的数据量减少。如果底层的文件格式为列式存储
(比如 Parquet),则可以进一步映射下推,映射可以理解为表结构映射
,Parquet每一列的所有值都是连续存储的,所以分区取出每一列的所有值就可以实现TableScan
算子,而避免扫描整个表文件内容
Spark SQL处理SQL流程
Spark SQL处理SQL流程.png-
词法解析
:对SQL语句进行初步结构化,类似于分词 -
语法分析
,语义分析
:对结构化的SQL进行规则分析,比如判断数据库是否存在,语法是否符合SQL语法规则等 -
逻辑计划
:对合规后的SQL生成逻辑执行计划,其中就行语法优化和逻辑改写 -
物理计划
:对逻辑计划生成Spark DAG图 -
Execute
:执行物理计划
使用explain查看Spark SQL逻辑执行计划
使用explain
方法查看Spark SQL的逻辑计划和物理计划,先创建一个dataframe备用
scala> val df = Seq(("a", 1), ("b", 2)).toDF("a", "b")
df: org.apache.spark.sql.DataFrame = [a: string, b: int]
scala> df.show()
+---+---+
| a| b|
+---+---+
| a| 1|
| b| 2|
+---+---+
加入过滤条件和列筛选条件,调用explain()方法可以看到物理执行计划
scala> df.filter($"a" === "a").select($"b").explain()
== Physical Plan ==
*(1) Project [_2#3 AS b#6]
+- *(1) Filter (isnotnull(_1#2) && (_1#2 = a))
+- LocalTableScan [_1#2, _2#3]
加入explain的参数extended=true
或者直接加入true
可以看到更多信息,包括解析逻辑化(词法解析),分析后的逻辑计划(语法分析语义分析),优化后的逻辑计划(逻辑计划)
scala> df.filter($"a" === "a").select($"b").explain(extended=true)
== Parsed Logical Plan ==
'Project [unresolvedalias('b, None)]
+- AnalysisBarrier
+- Filter (a#5 = a)
+- Project [_1#2 AS a#5, _2#3 AS b#6]
+- LocalRelation [_1#2, _2#3]
== Analyzed Logical Plan ==
b: int
Project [b#6]
+- Filter (a#5 = a)
+- Project [_1#2 AS a#5, _2#3 AS b#6]
+- LocalRelation [_1#2, _2#3]
== Optimized Logical Plan ==
Project [_2#3 AS b#6]
+- Filter (isnotnull(_1#2) && (_1#2 = a))
+- LocalRelation [_1#2, _2#3]
== Physical Plan ==
*(1) Project [_2#3 AS b#6]
+- *(1) Filter (isnotnull(_1#2) && (_1#2 = a))
+- LocalTableScan [_1#2, _2#3]
explain的结果从下往上
看,例如优化后的逻辑计划为先获得本地关系表,再filter过滤
第一列不为空且为a,再project映射
获得想要的第二列置为b
使用explain分析Spark SQL逻辑计划优化
读取一张parquet存储的hive表,对某列进行排序orderBy
,排序结果根据filter
,最终选择一列为想要的DataFrame
scala> val df = spark.sql("select * from feature_data_xyf").orderBy($"formatted_ent_name".desc).filter($"is_listed" === 1).select($"label")
scala> df.explain(true)
== Analyzed Logical Plan ==
label: double
Project [label#18]
+- Filter (is_listed#43 = 1)
+- Sort [formatted_ent_name#17 DESC NULLS LAST], true
+- Project [formatted_ent_name#17, label#18, score_7#19, senti_zhong#20, senti_fu#21, score_mean#22, score_7D_max#23, score_7D_min#24, score_7D_mean#25, score_30D_max#26, score_30D_min#27, score_30D_mean#28, score_90D_max#29, score_90D_min#30, score_90D_mean#31, score_180D_max#32, score_180D_min#33, score_180D_mean#34, score_365D_max#35, score_365D_min#36, score_365D_mean#37, ent_type#38, found_date#39, reg_cap#40, ... 3 more fields]
+- SubqueryAlias feature_data_xyf
+- Relation[formatted_ent_name#17,label#18,score_7#19,senti_zhong#20,senti_fu#21,score_mean#22,score_7D_max#23,score_7D_min#24,score_7D_mean#25,score_30D_max#26,score_30D_min#27,score_30D_mean#28,score_90D_max#29,score_90D_min#30,score_90D_mean#31,score_180D_max#32,score_180D_min#33,score_180D_mean#34,score_365D_max#35,score_365D_min#36,score_365D_mean#37,ent_type#38,found_date#39,reg_cap#40,... 3 more fields] parquet
== Optimized Logical Plan ==
Project [label#18]
+- Sort [formatted_ent_name#17 DESC NULLS LAST], true
+- Project [formatted_ent_name#17, label#18]
+- Filter (isnotnull(is_listed#43) && (is_listed#43 = 1))
+- Relation[formatted_ent_name#17,label#18,score_7#19,senti_zhong#20,senti_fu#21,score_mean#22,score_7D_max#23,score_7D_min#24,score_7D_mean#25,score_30D_max#26,score_30D_min#27,score_30D_mean#28,score_90D_max#29,score_90D_min#30,score_90D_mean#31,score_180D_max#32,score_180D_min#33,score_180D_mean#34,score_365D_max#35,score_365D_min#36,score_365D_mean#37,ent_type#38,found_date#39,reg_cap#40,... 3 more fields] parquet
== Physical Plan ==
*(2) Project [label#18]
+- *(2) Sort [formatted_ent_name#17 DESC NULLS LAST], true, 0
+- Exchange rangepartitioning(formatted_ent_name#17 DESC NULLS LAST, 200)
+- *(1) Project [formatted_ent_name#17, label#18]
+- *(1) Filter (isnotnull(is_listed#43) && (is_listed#43 = 1))
+- *(1) FileScan parquet ent_risk_predict.feature_data_xyf[formatted_ent_name#17,label#18,is_listed#43] Batched: true, Format: Parquet, Location: InMemoryFileIndex[hdfs:///user/hive/warehouse/ent_risk_predict.db/feature_data_xyf], PartitionFilters: [], PushedFilters: [IsNotNull(is_listed), EqualTo(is_listed,1)], ReadSchema: struct<formatted_ent_name:string,label:double,is_listed:int>
将Analyzed Logical Plan
原始逻辑的处理流程图和Physical Plan
最终的物理计划流程图进行对比:
由此可见在读取parquet阶段就将过滤条件下推到数据源,并且将需要的列也下推到数据源而不是原计划中的select *。
另取一个dataframe,对一列做groupBy
聚合操作
scala> val df = spark.read.format("csv").option("header", true).load("/tmp/churn_train.csv")
scala> val df2 = df.groupBy($"label").count()
scala> df2.explain(true)
== Analyzed Logical Plan ==
label: string, count: bigint
Aggregate [label#1069], [label#1069, count(1) AS count#1147L]
+- Relation[USR_NUM_ID#1032,shop_duration#1033,recent#1034,monetary#1035,max_amount#1036,items_count#1037,valid_points_sum#1038,CHANNEL_NUM_ID#1039,member_day#1040,VIP_TYPE_NUM_ID#1041,frequence#1042,avg_amount#1043,item_count_turn#1044,avg_piece_amount#1045,monetary3#1046,max_amount3#1047,items_count3#1048,frequence3#1049,shops_count#1050,promote_percent#1051,wxapp_diff#1052,store_diff#1053,shop_channel#1054,week_percent#1055,... 14 more fields] csv
== Optimized Logical Plan ==
Aggregate [label#1069], [label#1069, count(1) AS count#1147L]
+- Project [label#1069]
+- Relation[USR_NUM_ID#1032,shop_duration#1033,recent#1034,monetary#1035,max_amount#1036,items_count#1037,valid_points_sum#1038,CHANNEL_NUM_ID#1039,member_day#1040,VIP_TYPE_NUM_ID#1041,frequence#1042,avg_amount#1043,item_count_turn#1044,avg_piece_amount#1045,monetary3#1046,max_amount3#1047,items_count3#1048,frequence3#1049,shops_count#1050,promote_percent#1051,wxapp_diff#1052,store_diff#1053,shop_channel#1054,week_percent#1055,... 14 more fields] csv
== Physical Plan ==
*(2) HashAggregate(keys=[label#1069], functions=[count(1)], output=[label#1069, count#1147L])
+- Exchange hashpartitioning(label#1069, 200)
+- *(1) HashAggregate(keys=[label#1069], functions=[partial_count(1)], output=[label#1069, count#1152L])
+- *(1) FileScan csv [label#1069] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs:///tmp/churn_train.csv], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<label:string>
对比分析后的逻辑计划和最终的执行计划:
对一列进行
groupBy
聚合计数只需要所有数据的一个字段,因此在逻辑计划优化中加入Project映射裁剪
,并且在物理计划中再次下推到数据源
在join
操作后面加入filter
,创建两个dataframe备用,join后新dataframe使用filter过滤
scala> val df = Seq(("a", 1), ("b", 2), ("c", 3)).toDF("A", "B")
scala> val df2 = Seq(("a", 4), ("b", 5), ("c", 6)).toDF("A", "C")
scala> val df3 = df.join(df2, Seq("A"), "left_outer")
scala> val df4 = df3.filter($"A" =!= "b")
scala> df4.explain(true)
== Analyzed Logical Plan ==
A: string, B: int, C: int
Filter NOT (A#192 = b)
+- Project [A#192, B#193, C#202]
+- Join LeftOuter, (A#192 = A#201)
:- Project [_1#189 AS A#192, _2#190 AS B#193]
: +- LocalRelation [_1#189, _2#190]
+- Project [_1#198 AS A#201, _2#199 AS C#202]
+- LocalRelation [_1#198, _2#199]
== Optimized Logical Plan ==
Project [A#192, B#193, C#202]
+- Join LeftOuter, (A#192 = A#201)
:- Project [_1#189 AS A#192, _2#190 AS B#193]
: +- Filter (isnotnull(_1#189) && NOT (_1#189 = b))
: +- LocalRelation [_1#189, _2#190]
+- LocalRelation [A#201, C#202]
== Physical Plan ==
*(1) Project [A#192, B#193, C#202]
+- *(1) BroadcastHashJoin [A#192], [A#201], LeftOuter, BuildRight
:- *(1) Project [_1#189 AS A#192, _2#190 AS B#193]
: +- *(1) Filter (isnotnull(_1#189) && NOT (_1#189 = b))
: +- LocalTableScan [_1#189, _2#190]
+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true]))
+- LocalTableScan [A#201, C#202]
对比解析后的逻辑计划和优化后的逻辑计划如下:
filter下推到join之前,如果是
左连接
则主表filter
,如果是内连接
则两表都要filter
。
网友评论