定义:K-Means 是一种基于距离的排他的聚类划分方法。
例如:身高体重划分
image由于 K-Means 算法值针对给定的完整数据集进行操作,不需要任何特殊的训练数据
所以 K-Means 是一种无监督的机器学习
K-Means 实现
image以身高和体重为例子,开始确定3个K点(大圆点),然后计算与K 的距离然后将多个数据集划分。
k 的选择一般基于经验值和多次实验结果。例如1.5米50kg算矮标准,1.5米60kg算矮胖。
算法实现
具体的算法步骤如下:
1.随机选择K个中心点
2.把每个数据点分配到离它最近的中心点;
3.重新计算每类中的点到该类中心点距离的平均值
4.分配每个数据到它最近的中心点;
5.重复步骤3和4,直到所有的观测值不再被分配或是达到最大的迭代次数(R把10次作为默认迭代次数)。
java代码实现
package KMeans;
import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.Vector;
public class MyKmeans {
static Vector<Point> li=new Vector<Point>();
//static List<Point> li=new ArrayList<Point>();
static List<Vector<Point>> list=new ArrayList<Vector<Point>>(); //每次迭代保存结果,一个vector代表一个簇
private final static Integer K=2; //选K=2,也就是估算有两个簇。
private final static Double converge=0.001; //当距离小于某个值的时候,就认为聚类已经聚类了,不需要再迭代,这里的值选0.001
//读取数据
public static final void readF1() throws IOException {
String filePath="simple_k-means.txt";
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
InputStream inputStream = classLoader.getResourceAsStream(filePath);
BufferedReader br = new BufferedReader(new InputStreamReader(inputStream));
for (String line = br.readLine(); line != null; line = br.readLine()) {
if(line.length()==0||"".equals(line))continue;
String[] str=line.split(" ");
Point p0=new Point();
p0.setX(Double.valueOf(str[0]));
p0.setY(Double.valueOf(str[1]));
li.add(p0);
//System.out.println(line);
}
br.close();
}
//math.sqrt(double n)
//扩展下,如果要给m开n次方就用java.lang.StrictMath.pow(m,1.0/n);
//采用欧氏距离
public static Double DistanceMeasure(Point p1,Point p2){
Double tmp=StrictMath.pow(p2.getX()-p1.getX(), 2)+StrictMath.pow(p2.getY()-p1.getY(), 2);
return Math.sqrt(tmp);
}
//计算新的簇心
public static Double CalCentroid(){
System.out.println("------------------------------------------------");
Double movedist=Double.MAX_VALUE;
for(int i=0;i<list.size();i++){
Vector<Point> subli=list.get(i);
Point po=new Point();
Double sumX=0.0;
Double sumY=0.0;
Double Clusterlen=Double.valueOf(subli.size());
for(int j=0;j<Clusterlen;j++){
Point nextp=subli.get(j);
sumX=sumX+nextp.getX();
sumY=sumY+nextp.getY();
}
po.setX(sumX/Clusterlen);
po.setY(sumY/Clusterlen);
//新的点与旧点之间的距离
Double dist=DistanceMeasure(subli.get(0),po);
//在多个簇心移动的过程中,返回移动距离最小的值
if(dist<movedist)movedist=dist;
list.get(i).clear();
list.get(i).add(po);
System.out.println("C"+i+"的簇心为:"+po.getX()+","+po.getY());
}
String test="ll";
return movedist;
}
//本次的簇心
//下一次移动的簇心
private static Double move=Double.MAX_VALUE;//移动距离
//不断地迭代,直到收敛
public static void RecursionKluster(){
for(int times=2;move>converge;times++){
System.out.println("第"+times+"次迭代");
//默认每一个list里的Vector第0个元素是质心
for(int i=0;i<li.size();i++){
Point p=new Point();
p=li.get(i);
int index = -1;
double neardist = Double.MAX_VALUE;
for(int k=0;k<K;k++){
Point centre=list.get(k).get(0);
double currentdist=DistanceMeasure(p,centre);
if(currentdist<neardist){
neardist=currentdist;
index=k;
}
}
System.out.println("C"+index+":的点为:"+p.getX()+","+p.getY());
list.get(index).add(p);
}
//重新计算簇心,并返回移动的距离,最小的那个距离
move=CalCentroid();
System.out.println("各个簇心移动中最小的距离为,move="+move);
}
}
public static void Kluster(){
for(int k=0;k<K;k++){
Vector<Point> vect=new Vector<Point>();
Point p=new Point();
p=li.get(k);
vect.add(p);
list.add(vect);
}
System.out.println("第1次迭代");
//默认每一个list里的Vector第0个元素是质心
for(int i=K;i<li.size();i++){
Point p=new Point();
p=li.get(i);
int index = -1;
double neardist = Double.MAX_VALUE;
for(int k=0;k<K;k++){
Point centre=list.get(k).get(0);
double currentdist=DistanceMeasure(p,centre);
if(currentdist<neardist){
neardist=currentdist;
index=k;
}
}
System.out.println("C"+index+":的点为:"+p.getX()+","+p.getY());
list.get(index).add(p);
}
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
//读取数据
readF1();
//第一次迭代
Kluster();
//第一次迭代后计算簇心
CalCentroid();
//不断迭代,直到收敛
RecursionKluster();
}
}
package KMeans;
import lombok.Data;
@Data
public class Point {
double X;
double Y;
}
simple_k-means.txt
1 1
2 1
1 2
2 2
3 3
8 8
8 9
9 8
9 9
运行结果
第1次迭代
C0:的点为:1.0,2.0
C1:的点为:2.0,2.0
C1:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.0,1.5
C1的簇心为:5.857142857142857,5.714285714285714
第2次迭代
C0:的点为:1.0,1.0
C0:的点为:2.0,1.0
C0:的点为:1.0,2.0
C0:的点为:2.0,2.0
C0:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.6666666666666667,1.75
C1的簇心为:7.971428571428572,7.942857142857143
各个簇心移动中最小的距离为,move=0.7120003121097943
第3次迭代
C0:的点为:1.0,1.0
C0:的点为:2.0,1.0
C0:的点为:1.0,2.0
C0:的点为:2.0,2.0
C0:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.777777777777778,1.7916666666666667
C1的簇心为:8.394285714285715,8.388571428571428
各个簇心移动中最小的距离为,move=0.11866671868496578
第4次迭代
C0:的点为:1.0,1.0
C0:的点为:2.0,1.0
C0:的点为:1.0,2.0
C0:的点为:2.0,2.0
C0:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.7962962962962965,1.7986111111111114
C1的簇心为:8.478857142857143,8.477714285714285
各个簇心移动中最小的距离为,move=0.019777786447494432
第5次迭代
C0:的点为:1.0,1.0
C0:的点为:2.0,1.0
C0:的点为:1.0,2.0
C0:的点为:2.0,2.0
C0:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.799382716049383,1.7997685185185184
C1的簇心为:8.495771428571429,8.495542857142857
各个簇心移动中最小的距离为,move=0.003296297741248916
第6次迭代
C0:的点为:1.0,1.0
C0:的点为:2.0,1.0
C0:的点为:1.0,2.0
C0:的点为:2.0,2.0
C0:的点为:3.0,3.0
C1:的点为:8.0,8.0
C1:的点为:8.0,9.0
C1:的点为:9.0,8.0
C1:的点为:9.0,9.0
------------------------------------------------
C0的簇心为:1.7998971193415638,1.7999614197530864
C1的簇心为:8.499154285714287,8.499108571428572
各个簇心移动中最小的距离为,move=5.49382956874724E-4
Process finished with exit code 0
网友评论