散点图
特性: 两个变量之间的关系分布图
plot(mtcars$wt, mtcars$mpg)
精细化
plot(mtcars$wt, mtcars$mpg, xlab = "Car weight", ylab = "Miles per Gallon", col="red", pch=17)
数据拟合
plot(mtcars$wt, mtcars$mpg, xlab = "Car weight", ylab = "Miles per Gallon", col="red", pch=17)
abline(lm(mtcars$mpg~mtcars$wt))
# lm 是线性模型的意思
简单说一下 lm 函数
Usage
lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)
-formula:指要拟合的模型形式,
- data:是一个数据框,包含了用于拟合模型的数据。
lm(mtcars$mpg~mtcars$wt) 对 mpg和wt进行线性模型分析, 中间用~
abline 函数的作用是在一张图表上添加直线(参考线), 可以是一条斜线,通过x或y轴的交点和斜率来确定位置;也可以是一条水平或者垂直的线,只需要指定与x轴或y轴交点的位置就可以了
plot
plot(mtcars)
成对关系图更好看出两个变量之间的 关系
pairs(mtcars)
plot(~mpg+disp+drat+wt,data = mtcars)
ggplot散点图
library(ggplot2)
p = ggplot(mtcars, aes(wt, mpg))
> p + geom_point()
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(colour = factor(cyl)))
传入的不是因子
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(colour = cyl))
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(colour = factor(gear)))
下面几个颜色绘制方法等价
aes(col = x)
aes(fg = x)
aes(color = x)
aes(colour = x)
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(shape = factor(cyl)))
p + geom_point(aes(shape = factor(cyl))) + scale_shape(solid = FALSE)
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(size=qsec))
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(color=cyl)) + scale_colour_gradient(low = "red")
p = ggplot(mtcars, aes(wt, mpg))
p + geom_point(aes(color=cyl, size=qsec)) + scale_colour_gradient(low = "red")
plotly
install.packages("plotly")
p = plot_ly(mtcars, x=~mpg, y=~wt, type="scatter")
print(p)
网友评论