双目标定(一)

作者: Parker2019 | 来源:发表于2020-01-19 22:43 被阅读0次

    OpenCV标定

    双目标定1:标定代码用的是OpenCV官方给的sample/cpp下的stereo_calib.cpp,代码如下:

    * This is sample from the OpenCV book. The copyright notice is below */
    
    /* *************** License:**************************
       Oct. 3, 2008
       Right to use this code in any way you want without warranty, support or any guarantee of it working.
    
       BOOK: It would be nice if you cited it:
       Learning OpenCV: Computer Vision with the OpenCV Library
         by Gary Bradski and Adrian Kaehler
         Published by O'Reilly Media, October 3, 2008
    
       AVAILABLE AT:
         http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
         Or: http://oreilly.com/catalog/9780596516130/
         ISBN-10: 0596516134 or: ISBN-13: 978-0596516130
    
       OPENCV WEBSITES:
         Homepage:      http://opencv.org
         Online docs:   http://docs.opencv.org
         Q&A forum:     http://answers.opencv.org
         GitHub:        https://github.com/opencv/opencv/
       ************************************************** */
    
    #include "opencv2/calib3d.hpp"
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/imgproc.hpp"
    
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <iostream>
    #include <iterator>
    #include <stdio.h>
    #include <stdlib.h>
    #include <ctype.h>
    
    using namespace cv;
    using namespace std;
    
    static int print_help()
    {
        cout <<
                " Given a list of chessboard images, the number of corners (nx, ny)\n"
                " on the chessboards, and a flag: useCalibrated for \n"
                "   calibrated (0) or\n"
                "   uncalibrated \n"
                "     (1: use stereoCalibrate(), 2: compute fundamental\n"
                "         matrix separately) stereo. \n"
                " Calibrate the cameras and display the\n"
                " rectified results along with the computed disparity images.   \n" << endl;
        cout << "Usage:\n ./stereo_calib -w=<board_width default=9> -h=<board_height default=6> -s=<square_size default=1.0> <image list XML/YML file default=stereo_calib.xml>\n" << endl;
        return 0;
    }
    
    
    static void
    StereoCalib(const vector<string>& imagelist, Size boardSize, float squareSize, bool displayCorners = false, bool useCalibrated=true, bool showRectified=true)
    {
        if( imagelist.size() % 2 != 0 )
        {
            cout << "Error: the image list contains odd (non-even) number of elements\n";
            return;
        }
    
        const int maxScale = 2;
        // ARRAY AND VECTOR STORAGE:
    
        vector<vector<Point2f> > imagePoints[2];
        vector<vector<Point3f> > objectPoints;
        Size imageSize;
    
        int i, j, k, nimages = (int)imagelist.size()/2;
    
        imagePoints[0].resize(nimages);
        imagePoints[1].resize(nimages);
        vector<string> goodImageList;
    
        for( i = j = 0; i < nimages; i++ )
        {
            for( k = 0; k < 2; k++ )
            {
                const string& filename = imagelist[i*2+k];
                Mat img = imread(filename, 0);
                if(img.empty())
                    break;
                if( imageSize == Size() )
                    imageSize = img.size();
                else if( img.size() != imageSize )
                {
                    cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                    break;
                }
                bool found = false;
                vector<Point2f>& corners = imagePoints[k][j];
                for( int scale = 1; scale <= maxScale; scale++ )
                {
                    Mat timg;
                    if( scale == 1 )
                        timg = img;
                    else
                        resize(img, timg, Size(), scale, scale, INTER_LINEAR_EXACT);
                    found = findChessboardCorners(timg, boardSize, corners,
                        CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
                    if( found )
                    {
                        if( scale > 1 )
                        {
                            Mat cornersMat(corners);
                            cornersMat *= 1./scale;
                        }
                        break;
                    }
                }
                if( displayCorners )
                {
                    cout << filename << endl;
                    Mat cimg, cimg1;
                    cvtColor(img, cimg, COLOR_GRAY2BGR);
                    drawChessboardCorners(cimg, boardSize, corners, found);
                    double sf = 640./MAX(img.rows, img.cols);
                    resize(cimg, cimg1, Size(), sf, sf, INTER_LINEAR_EXACT);
                    imshow("corners", cimg1);
                    char c = (char)waitKey(500);
                    if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
                        exit(-1);
                }
                else
                    putchar('.');
                if( !found )
                    break;
                cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
                             TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                          30, 0.01));
            }
            if( k == 2 )
            {
                goodImageList.push_back(imagelist[i*2]);
                goodImageList.push_back(imagelist[i*2+1]);
                j++;
            }
        }
        cout << j << " pairs have been successfully detected.\n";
        nimages = j;
        if( nimages < 2 )
        {
            cout << "Error: too little pairs to run the calibration\n";
            return;
        }
    
        imagePoints[0].resize(nimages);
        imagePoints[1].resize(nimages);
        objectPoints.resize(nimages);
    
        for( i = 0; i < nimages; i++ )
        {
            for( j = 0; j < boardSize.height; j++ )
                for( k = 0; k < boardSize.width; k++ )
                    objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
        }
    
        cout << "Running stereo calibration ...\n";
    
        Mat cameraMatrix[2], distCoeffs[2];
        cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
        cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
        Mat R, T, E, F;
    
        double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                        cameraMatrix[0], distCoeffs[0],
                        cameraMatrix[1], distCoeffs[1],
                        imageSize, R, T, E, F,
                        CALIB_FIX_ASPECT_RATIO +
                        CALIB_ZERO_TANGENT_DIST +
                        CALIB_USE_INTRINSIC_GUESS +
                        CALIB_SAME_FOCAL_LENGTH +
                        CALIB_RATIONAL_MODEL +
                        CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
                        TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
        cout << "done with RMS error=" << rms << endl;
    
    // CALIBRATION QUALITY CHECK
    // because the output fundamental matrix implicitly
    // includes all the output information,
    // we can check the quality of calibration using the
    // epipolar geometry constraint: m2^t*F*m1=0
        double err = 0;
        int npoints = 0;
        vector<Vec3f> lines[2];
        for( i = 0; i < nimages; i++ )
        {
            int npt = (int)imagePoints[0][i].size();
            Mat imgpt[2];
            for( k = 0; k < 2; k++ )
            {
                imgpt[k] = Mat(imagePoints[k][i]);
                undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
                computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
            }
            for( j = 0; j < npt; j++ )
            {
                double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                    imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                               fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                    imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
                err += errij;
            }
            npoints += npt;
        }
        cout << "average epipolar err = " <<  err/npoints << endl;
    
        // save intrinsic parameters
        FileStorage fs("intrinsics.yml", FileStorage::WRITE);
        if( fs.isOpened() )
        {
            fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
                "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
            fs.release();
        }
        else
            cout << "Error: can not save the intrinsic parameters\n";
    
        Mat R1, R2, P1, P2, Q;
        Rect validRoi[2];
    
        stereoRectify(cameraMatrix[0], distCoeffs[0],
                      cameraMatrix[1], distCoeffs[1],
                      imageSize, R, T, R1, R2, P1, P2, Q,
                      CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
    
        fs.open("extrinsics.yml", FileStorage::WRITE);
        if( fs.isOpened() )
        {
            fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
            fs.release();
        }
        else
            cout << "Error: can not save the extrinsic parameters\n";
    
        // OpenCV can handle left-right
        // or up-down camera arrangements
        bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
    
    // COMPUTE AND DISPLAY RECTIFICATION
        if( !showRectified )
            return;
    
        Mat rmap[2][2];
    // IF BY CALIBRATED (BOUGUET'S METHOD)
        if( useCalibrated )
        {
            // we already computed everything
        }
    // OR ELSE HARTLEY'S METHOD
        else
     // use intrinsic parameters of each camera, but
     // compute the rectification transformation directly
     // from the fundamental matrix
        {
            vector<Point2f> allimgpt[2];
            for( k = 0; k < 2; k++ )
            {
                for( i = 0; i < nimages; i++ )
                    std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
            }
            F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
            Mat H1, H2;
            stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
    
            R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
            R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
            P1 = cameraMatrix[0];
            P2 = cameraMatrix[1];
        }
    
        //Precompute maps for cv::remap()
        initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
        initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
    
        Mat canvas;
        double sf;
        int w, h;
        if( !isVerticalStereo )
        {
            sf = 600./MAX(imageSize.width, imageSize.height);
            w = cvRound(imageSize.width*sf);
            h = cvRound(imageSize.height*sf);
            canvas.create(h, w*2, CV_8UC3);
        }
        else
        {
            sf = 300./MAX(imageSize.width, imageSize.height);
            w = cvRound(imageSize.width*sf);
            h = cvRound(imageSize.height*sf);
            canvas.create(h*2, w, CV_8UC3);
        }
    
        for( i = 0; i < nimages; i++ )
        {
            for( k = 0; k < 2; k++ )
            {
                Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
                remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
                cvtColor(rimg, cimg, COLOR_GRAY2BGR);
                Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
                resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
                if( useCalibrated )
                {
                    Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                              cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                    rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
                }
            }
    
            if( !isVerticalStereo )
                for( j = 0; j < canvas.rows; j += 16 )
                    line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
            else
                for( j = 0; j < canvas.cols; j += 16 )
                    line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
            imshow("rectified", canvas);
            char c = (char)waitKey();
            if( c == 27 || c == 'q' || c == 'Q' )
                break;
        }
    }
    
    
    static bool readStringList( const string& filename, vector<string>& l )
    {
        l.resize(0);
        FileStorage fs(filename, FileStorage::READ);
        if( !fs.isOpened() )
            return false;
        FileNode n = fs.getFirstTopLevelNode();
        if( n.type() != FileNode::SEQ )
            return false;
        FileNodeIterator it = n.begin(), it_end = n.end();
        for( ; it != it_end; ++it )
            l.push_back((string)*it);
        return true;
    }
    
    int main(int argc, char** argv)
    {
        Size boardSize;
        string imagelistfn;
        bool showRectified;
        cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{s|1.0|}{nr||}{help||}{@input|stereo_calib.xml|}");
        if (parser.has("help"))
            return print_help();
        showRectified = !parser.has("nr");
        imagelistfn = samples::findFile(parser.get<string>("@input"));
        boardSize.width = parser.get<int>("w");
        boardSize.height = parser.get<int>("h");
        float squareSize = parser.get<float>("s");
        if (!parser.check())
        {
            parser.printErrors();
            return 1;
        }
        vector<string> imagelist;
        bool ok = readStringList(imagelistfn, imagelist);
        if(!ok || imagelist.empty())
        {
            cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
            return print_help();
        }
    
        StereoCalib(imagelist, boardSize, squareSize, false, true, showRectified);
        return 0;
    }
    
    

    先说明下环境:
    软件环境:

    • opencv 3.4.5
    • Visual Studio Code
    • 编译器:MinGW-w64
      (Thread model: posixgcc version 8.1.0)
      硬件环境:
    • 基线为10cm的双目摄像机,焦距35mm,两个相机走同一个芯片,由一根Type-c的线与主机相连。
      编译完成后,在终端输入.\stereo_calib.exe -w=9 -h=6 .\stereo_calib.xml运行标定程序。
      运行说明:
    • 输入的参数可以看源代码里的print_help()函数里面看,此处-w=9 -h=6表示9*6的棋盘图(按内角点算,OpenCV标定的时候也是看内角点。)
    • -s棋盘格的默认大小,默认为1,这里OpenCV官网给的9*6棋盘格每个方格是标准的25mm。
    • stereo_calib.xml用于双目匹配的图集。打开后会发现其实给的是图片文件路径。
    • 此处可以拿官方给的十几张图片做测试,确保源文件,图片文件和xml文件在同一目录下,PS官方图片在samples/data目录下。
      标定完成后,会逐对出现矫正图。而且目录下会生成intrinsics.ymlextrinsics.yml,分别对应摄像机的内外参,可以直接使用。
      运行截图

    终端打印的信息很关键,done with RMS error的数值要小于1,average epipolar err的数值要尽量小才能出现rectified矫正图。否则矫正图一团黑

    相关文章

      网友评论

        本文标题:双目标定(一)

        本文链接:https://www.haomeiwen.com/subject/wkydzctx.html