教程:
https://github.com/peiss/ant-learn-recsys
https://www.youtube.com/watch?v=FMN1e8Izyac&list=PLCemT-oocgalODXpQ-EP_IfrrD-A--40h&index=15
基本思路:
- 用户 喜欢 --> 物品 --> 相似 物品
- 用户 有相似兴趣的 --> 用户 --> 喜欢 --> 物品
- 用户 喜欢,具有 -- > 特性 <-- 包含 物品
推荐系统分类:
1.根据实时性
离线推荐 / 实时推荐
2.是否个性化
基于统计(热门) / 个性化推荐
3.根据推荐原则
基于相识度推荐
基于知识推荐
基于模型推荐
4.基于数据源分类
基于人口统计学推荐(用户)
基于内容推荐(物品)
基于协同过滤推荐(行为)
-- 基于近邻协同过滤(相似度)
---基于用户
--- 基于物品
-- 基于模型协同过滤
---奇异值分解 SVD
--- 潜在语义分析 LSA
--- 支持向量机 SVM
推荐系统评测指标
1.预测准确度 精确率 召回率
2.用户满意度
3.覆盖率
4.多样性
5.惊喜度
6.信任度
7.实时性
8.健壮性
9.商业目标
1、推荐系统包含哪些环节:
召回 --> 排序 --> 调整
![](https://img.haomeiwen.com/i4870492/1fbc019f66ef29cd.png)
2、召回路径:
![](https://img.haomeiwen.com/i4870492/c173e6655b72a3f9.png)
推荐系统建议技术架构:
![](https://img.haomeiwen.com/i4870492/ba370cea879c001b.jpg)
推荐系统分类:
![](https://img.haomeiwen.com/i4870492/21904a65937249cf.jpg)
基于内容的推荐系统:
![](https://img.haomeiwen.com/i4870492/e3896df93d141f81.jpg)
![](https://img.haomeiwen.com/i4870492/ba2f63d8df4b4a9b.jpg)
![](https://img.haomeiwen.com/i4870492/863aca341b5685e1.jpg)
基于协同过滤的推荐系统:
![](https://img.haomeiwen.com/i4870492/f887adf62542d098.jpg)
![](https://img.haomeiwen.com/i4870492/0567899aa00e99e1.jpg)
![](https://img.haomeiwen.com/i4870492/59d1d8b60083d017.jpg)
实现多路召回的融合排序:
![](https://img.haomeiwen.com/i4870492/9563128290725785.jpg)
![](https://img.haomeiwen.com/i4870492/1b85f1cf02d0e090.jpg)
实现AB测试:
![](https://img.haomeiwen.com/i4870492/50499089fd1b8f04.jpg)
![](https://img.haomeiwen.com/i4870492/7b080a05f0e0c5e0.jpg)
![](https://img.haomeiwen.com/i4870492/d996629fca817686.jpg)
实现内容相似推荐:
![](https://img.haomeiwen.com/i4870492/d24cf1e3a26e879a.jpg)
实现用户聚类推荐:
![](https://img.haomeiwen.com/i4870492/dddd8093172a666b.jpg)
![](https://img.haomeiwen.com/i4870492/34da88f1acb4dfde.jpg)
![](https://img.haomeiwen.com/i4870492/c274502a0dd7f4a2.jpg)
实现矩阵分解的推荐:
矩阵分解是协同过滤中基于模型的一种
![](https://img.haomeiwen.com/i4870492/2827144188944807.jpg)
![](https://img.haomeiwen.com/i4870492/c9a80e14a5725f5d.jpg)
![](https://img.haomeiwen.com/i4870492/1167d7955ac8c747.jpg)
解决物品冷启动问题:
![](https://img.haomeiwen.com/i4870492/a7d34d14c286ea23.jpg)
![](https://img.haomeiwen.com/i4870492/10a366fc83874cfc.jpg)
![](https://img.haomeiwen.com/i4870492/df505a566a8c1dc3.jpg)
极其重要的Embedding技术:
![](https://img.haomeiwen.com/i4870492/80b8432f1513d6c8.jpg)
![](https://img.haomeiwen.com/i4870492/5bfe63bb0a1d8a16.jpg)
![](https://img.haomeiwen.com/i4870492/0e866f0330ab8383.jpg)
![](https://img.haomeiwen.com/i4870492/5bda68222e74ed85.jpg)
![](https://img.haomeiwen.com/i4870492/f06c1abbd88a57d4.jpg)
![](https://img.haomeiwen.com/i4870492/92a035dc86cab6ce.jpg)
Python使用Faiss实现向量近邻搜索:
解决Embedding的性能问题
![](https://img.haomeiwen.com/i4870492/98ca018589e7284d.jpg)
![](https://img.haomeiwen.com/i4870492/0a42f9648ac5236f.jpg)
推荐系统依赖的数据源与特征工程:
![](https://img.haomeiwen.com/i4870492/3a014fe8096018f7.jpg)
![](https://img.haomeiwen.com/i4870492/534f9c6ba739e432.jpg)
![](https://img.haomeiwen.com/i4870492/f23e5a6b42bd8597.jpg)
使用pyspark训练item2vec实现电影相关推荐:
item2vec的处理思路与word2vec一样
![](https://img.haomeiwen.com/i4870492/afb32d4edaaf6fa8.jpg)
使用SparkALS矩阵分解实现电影推荐:
![](https://img.haomeiwen.com/i4870492/7ea4a9be5864f7c6.jpg)
实现基于标签的推荐系统:
不涉及机器学习,只用到简单的统计
![](https://img.haomeiwen.com/i4870492/bbf68a068d53fa52.jpg)
Tensorflow2实现双塔DNN排序模型:
![](https://img.haomeiwen.com/i4870492/2c565f8ef5b168c6.jpg)
![](https://img.haomeiwen.com/i4870492/8da573cea9cef175.jpg)
推荐系统技能提升之论文阅读:
https://github.com/peiss/ant-learn-recsys/tree/master/recsys_papers
接入一个推荐系统需要哪些步骤:
![](https://img.haomeiwen.com/i4870492/ddc7313947df3b08.jpg)
网友评论