目录
- 拼接
1.1 append
1.2 concat - 关联
2.1 merge
2.2 join
# 导入相关库
import numpy as np
import pandas as pd
1 拼接
有两个DataFrame
,都存储了用户的一些信息,现在要拼接起来,组成一个DataFrame
,如何实现呢?
data1 = {
"name": ["Tom", "Bob"],
"age": [18, 30],
"city": ["Bei Jing ", "Shang Hai "]
}
df1 = pd.DataFrame(data=data1)
df1
name age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
data2 = {
"name": ["Mary", "James"],
"age": [35, 18],
"city": ["Guang Zhou", "Shen Zhen"]
}
df2 = pd.DataFrame(data=data2)
df2
name age city
0 Mary 35 Guang Zhou
1 James 18 Shen Zhen
1.1 append
append
是最简单的拼接两个DataFrame
的方法。
df1.append(df2)
name age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
0 Mary 35 Guang Zhou
1 James 18 Shen Zhen
可以看到,拼接后的索引默认还是原有的索引,如果想要重新生成索引的话,设置参数 ignore_index=True
即可。
df1.append(df2, ignore_index=True)
name age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
2 Mary 35 Guang Zhou
3 James 18 Shen Zhen
1.2 concat
除了 append
这种方式之外,还有 concat
这种方式可以实现相同的功能。
objs=[df1, df2]
pd.concat(objs, ignore_index=True)
name age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
2 Mary 35 Guang Zhou
3 James 18 Shen Zhen
如果想要区分出不同的DataFrame
的数据,可以通过设置参数 keys
,当然得设置参数ignore_index=False
。
pd.concat(objs, ignore_index=False, keys=["df1", "df2"])
name age city
df1 0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
df2 0 Mary 35 Guang Zhou
1 James 18 Shen Zhen
2 关联
有两个DataFrame
,分别存储了用户的部分信息,现在需要将用户的这些信息关联起来,如何实现呢?
data1 = {
"name": ["Tom", "Bob", "Mary", "James"],
"age": [18, 30, 35, 18],
"city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen"]
}
df1 = pd.DataFrame(data=data1)
df1
name age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
2 Mary 35 Guang Zhou
3 James 18 Shen Zhen
data2 = {"name": ["Bob", "Mary", "James", "Andy"],
"sex": ["male", "female", "male", np.nan],
"income": [8000, 8000, 4000, 6000]
}
df2 = pd.DataFrame(data=data2)
df2
name sex income
0 Bob male 8000
1 Mary female 8000
2 James male 4000
3 Andy NaN 6000
2.1 merge
通过 pd.merge
可以关联两个DataFrame
,这里我们设置参数 on="name"
,表示依据 name
来作为关联键。
pd.merge(df1, df2, on="name")
name age city sex income
0 Bob 30 Shang Hai male 8000
1 Mary 35 Guang Zhou female 8000
2 James 18 Shen Zhen male 4000
关联后发现数据变少了,只有 3 行数据,这是因为默认关联的方式是 inner
,如果不想丢失任何数据,可以设置参数 how="outer"
。
pd.merge(df1, df2, on="name", how="outer")
name age city sex income
0 Tom 18.0 Bei Jing NaN NaN
1 Bob 30.0 Shang Hai male 8000.0
2 Mary 35.0 Guang Zhou female 8000.0
3 James 18.0 Shen Zhen male 4000.0
4 Andy NaN NaN NaN 6000.0
可以看到,设置参数 how="outer"
后,确实不会丢失任何数据,他会在不存在的地方填为缺失值。
如果我们想保留左边所有的数据,可以设置参数 how="left"
;反之,如果想保留右边的所有数据,可以设置参数 how="right"
pd.merge(df1, df2, on="name", how="left")
name age city sex income
0 Tom 18 Bei Jing NaN NaN
1 Bob 30 Shang Hai male 8000.0
2 Mary 35 Guang Zhou female 8000.0
3 James 18 Shen Zhen male 4000.0
有时候,两个 DataFrame
中需要关联的键的名称不一样,可以通过 left_on
和 right_on
来分别设置。
df1.rename(columns={"name": "name1"}, inplace=True)
df1
name1 age city
0 Tom 18 Bei Jing
1 Bob 30 Shang Hai
2 Mary 35 Guang Zhou
3 James 18 Shen Zhen
df2.rename(columns={"name": "name2"}, inplace=True)
df2
name2 sex income
0 Bob male 8000
1 Mary female 8000
2 James male 4000
3 Andy NaN 6000
pd.merge(df1, df2, left_on="name1", right_on="name2")
name1 age city name2 sex income
0 Bob 30 Shang Hai Bob male 8000
1 Mary 35 Guang Zhou Mary female 8000
2 James 18 Shen Zhen James male 4000
有时候,两个DataFrame
中都包含相同名称的字段,如何处理呢?
我们可以设置参数 suffixes
,默认 suffixes=('_x', '_y')
表示将相同名称的左边的DataFrame
的字段名加上后缀_x
,右边加上后缀_y
。
df1["sex"] = "male"
df1
name1 age city sex
0 Tom 18 Bei Jing male
1 Bob 30 Shang Hai male
2 Mary 35 Guang Zhou male
3 James 18 Shen Zhen male
pd.merge(df1, df2, left_on="name1", right_on="name2")
name1 age city sex_x name2 sex_y income
0 Bob 30 Shang Hai male Bob male 8000
1 Mary 35 Guang Zhou male Mary female 8000
2 James 18 Shen Zhen male James male 4000
pd.merge(df1, df2, left_on="name1", right_on="name2", suffixes=("_left", "_right"))
name1 age city sex_left name2 sex_right income
0 Bob 30 Shang Hai male Bob male 8000
1 Mary 35 Guang Zhou male Mary female 8000
2 James 18 Shen Zhen male James male 4000
2.2 join
除了 merge
这种方式外,还可以通过 join
这种方式实现关联。相比 merge
,join
这种方式有以下几个不同:
默认参数on=None
,表示关联时使用左边和右边的索引作为键,设置参数on
可以指定的是关联时左边的所用到的键名
左边和右边字段名称重复时,通过设置参数 lsuffix
和 rsuffix
来解决。
df1.join(df2.set_index("name2"), on="name1", lsuffix="_left")
name1 age city sex_left sex income
0 Tom 18 Bei Jing male NaN NaN
1 Bob 30 Shang Hai male male 8000.0
2 Mary 35 Guang Zhou male female 8000.0
3 James 18 Shen Zhen male male 4000.0
网友评论