美文网首页
2019-03-04 Python标准模块logging的使用

2019-03-04 Python标准模块logging的使用

作者: qiuzhongwei | 来源:发表于2019-03-04 16:04 被阅读0次

    logging模块简介

    logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:

    • 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息
    • print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;

    logging模块使用

    1. 基本使用

    配置logging基本的设置,然后在控制台输出日志,

    import logging
    logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger = logging.getLogger(__name__)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    运行输出

    2016-10-09 19:11:19,434 - main - INFO - Start print log
    2016-10-09 19:11:19,434 - main - WARNING - Something maybe fail.
    2016-10-09 19:11:19,434 - main - INFO - Finish

    logging中可以选择很多消息级别,如debug、info、warning、error以及critical。通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
    例如,我们将logger的级别改为DEBUG,再观察一下输出结果,

    logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    

    从输出可以看出,多了debug级别的消息

    2016-10-09 19:12:08,289 - main - INFO - Start print log
    2016-10-09 19:12:08,289 - main - DEBUG - Do something
    2016-10-09 19:12:08,289 - main - WARNING - Something maybe fail.
    2016-10-09 19:12:08,289 - main - INFO - Finish

    logging.basicConfig函数各参数:

    1. filename:指定日志文件名;
    2. filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a';
    3. format:指定输出的格式和内容,format可以输出很多有用的信息,

    format 参数
    %(levelno)s:打印日志级别的数值
    %(levelname)s:打印日志级别的名称
    %(pathname)s:打印当前执行程序的路径,其实就是sys.argv[0]
    %(filename)s:打印当前执行程序名
    %(funcName)s:打印日志的当前函数
    %(lineno)d:打印日志的当前行号
    %(asctime)s:打印日志的时间
    %(thread)d:打印线程ID
    %(threadName)s:打印线程名称
    %(process)d:打印进程ID
    %(message)s:打印日志信息

    1. datefmt:指定时间格式,同time.strftime();
    2. level:设置日志级别,默认为logging.WARNNING;
    3. stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,7. 当stream和filename同时指定时,stream被忽略;

    2. 将日志写入到文件

    2.1 将日志写入到文件

    设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    logger.addHandler(handler)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    log.txt中日志数据为,

    2016-10-09 19:01:13,263 - main - INFO - Start print log
    2016-10-09 19:01:13,263 - main - WARNING - Something maybe fail.
    2016-10-09 19:01:13,263 - main - INFO - Finish

    2.2 将日志同时输出到屏幕和日志文件

    logger中添加StreamHandler,可以将日志输出到屏幕上,

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    可以在log.txt文件和控制台中同时看到.
    logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,

    handler名称:位置;作用
    StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件
    FileHandler:logging.FileHandler;日志输出到文件
    BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式
    RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚
    TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件
    SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP/IP sockets
    DatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP sockets
    SMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址
    SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslog
    NTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT/2000/XP的事件日志
    MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定buffer
    HTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"远程输出到HTTP服务器

    2.3 日志回滚

    使用RotatingFileHandler,可以实现日志回滚,

    import logging
    from logging.handlers import RotatingFileHandler
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    #定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1K
    rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
    rHandler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    rHandler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    console.setFormatter(formatter)
    
    logger.addHandler(rHandler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    logger.info("Finish")
    

    可以在工程目录中看到,备份的日志文件,

    2016/10/09 19:36 732 log.txt
    2016/10/09 19:36 967 log.txt.1
    2016/10/09 19:36 985 log.txt.2
    2016/10/09 19:36 976 log.txt.3

    2.4 设置消息的等级

    可以设置不同的日志等级,用于控制日志的输出,

    日志等级:使用范围
    FATAL:致命错误
    CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
    ERROR:发生错误时,如IO操作失败或者连接问题
    WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
    INFO:处理请求或者状态变化等日常事务
    DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态

    2.5 捕获traceback

    Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback,

    import logging
    logger = logging.getLogger(__name__)
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    logger.info("Start print log")
    logger.debug("Do something")
    logger.warning("Something maybe fail.")
    try:
        open("sklearn.txt","rb")
    except (SystemExit,KeyboardInterrupt):
        raise
    except Exception:
        logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
    
    logger.info("Finish")
    

    控制台和日志文件log.txt中输出,

    Something maybe fail.
    Faild to open sklearn.txt from logger.error
    Traceback (most recent call last):
      File "G:\zhb7627\Code\Eclipse WorkSpace\PythonTest\test.py", line 23, in <module>
        open("sklearn.txt","rb")
    IOError: [Errno 2] No such file or directory: 'sklearn.txt'
    Finish
    

    也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),

    logger.exception("Failed to open sklearn.txt from logger.exception")
    

    2.6 多模块使用logging

    主模块mainModule.py,

    import logging
    import subModule
    logger = logging.getLogger("mainModule")
    logger.setLevel(level = logging.INFO)
    handler = logging.FileHandler("log.txt")
    handler.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    console.setFormatter(formatter)
    
    logger.addHandler(handler)
    logger.addHandler(console)
    
    
    logger.info("creating an instance of subModule.subModuleClass")
    a = subModule.SubModuleClass()
    logger.info("calling subModule.subModuleClass.doSomething")
    a.doSomething()
    logger.info("done with  subModule.subModuleClass.doSomething")
    logger.info("calling subModule.some_function")
    subModule.som_function()
    logger.info("done with subModule.some_function")
    

    子模块subModule.py,

    import logging
    
    module_logger = logging.getLogger("mainModule.sub")
    class SubModuleClass(object):
        def __init__(self):
            self.logger = logging.getLogger("mainModule.sub.module")
            self.logger.info("creating an instance in SubModuleClass")
        def doSomething(self):
            self.logger.info("do something in SubModule")
            a = []
            a.append(1)
            self.logger.debug("list a = " + str(a))
            self.logger.info("finish something in SubModuleClass")
    
    def som_function():
        module_logger.info("call function some_function")
    

    执行之后,在控制和日志文件log.txt中输出,

    2016-10-09 20:25:42,276 - mainModule - INFO - creating an instance of subModule.subModuleClass
    2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - creating an instance in SubModuleClass
    2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.subModuleClass.doSomething
    2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - do something in SubModule
    2016-10-09 20:25:42,279 - mainModule.sub.module - INFO - finish something in SubModuleClass
    2016-10-09 20:25:42,279 - mainModule - INFO - done with subModule.subModuleClass.doSomething
    2016-10-09 20:25:42,279 - mainModule - INFO - calling subModule.some_function
    2016-10-09 20:25:42,279 - mainModule.sub - INFO - call function some_function
    2016-10-09 20:25:42,279 - mainModule - INFO - done with subModule.some_function

    首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。

    实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。

    通过JSON或者YAML文件配置logging模块

    尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。

    3.1 通过JSON文件配置

    {
        "version":1,
        "disable_existing_loggers":false,
        "formatters":{
            "simple":{
                "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
            }
        },
        "handlers":{
            "console":{
                "class":"logging.StreamHandler",
                "level":"DEBUG",
                "formatter":"simple",
                "stream":"ext://sys.stdout"
            },
            "info_file_handler":{
                "class":"logging.handlers.RotatingFileHandler",
                "level":"INFO",
                "formatter":"simple",
                "filename":"info.log",
                "maxBytes":"10485760",
                "backupCount":20,
                "encoding":"utf8"
            },
            "error_file_handler":{
                "class":"logging.handlers.RotatingFileHandler",
                "level":"ERROR",
                "formatter":"simple",
                "filename":"errors.log",
                "maxBytes":10485760,
                "backupCount":20,
                "encoding":"utf8"
            }
        },
        "loggers":{
            "my_module":{
                "level":"ERROR",
                "handlers":["info_file_handler"],
                "propagate":"no"
            }
        },
        "root":{
            "level":"INFO",
            "handlers":["console","info_file_handler","error_file_handler"]
        }
    }
    

    通过JSON加载配置文件,然后通过logging.dictConfig配置logging,

    import json
    import logging.config
    import os
    
    def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):
        path = default_path
        value = os.getenv(env_key,None)
        if value:
            path = value
        if os.path.exists(path):
            with open(path,"r") as f:
                config = json.load(f)
                logging.config.dictConfig(config)
        else:
            logging.basicConfig(level = default_level)
    
    def func():
        logging.info("start func")
    
        logging.info("exec func")
    
        logging.info("end func")
    
    if __name__ == "__main__":
        setup_logging(default_path = "logging.json")
        func()
    

    3.2 通过YAML文件配置

    version: 1
    disable_existing_loggers: False
    formatters:
            simple:
                format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    handlers:
        console:
                class: logging.StreamHandler
                level: DEBUG
                formatter: simple
                stream: ext://sys.stdout
        info_file_handler:
                class: logging.handlers.RotatingFileHandler
                level: INFO
                formatter: simple
                filename: info.log
                maxBytes: 10485760
                backupCount: 20
                encoding: utf8
        error_file_handler:
                class: logging.handlers.RotatingFileHandler
                level: ERROR
                formatter: simple
                filename: errors.log
                maxBytes: 10485760
                backupCount: 20
                encoding: utf8
    loggers:
        my_module:
                level: ERROR
                handlers: [info_file_handler]
                propagate: no
    root:
        level: INFO
        handlers: [console,info_file_handler,error_file_handler]
    

    通过YAML加载配置文件,然后通过logging.dictConfig配置logging,

    import yaml
    import logging.config
    import os
    
    def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
        path = default_path
        value = os.getenv(env_key,None)
        if value:
            path = value
        if os.path.exists(path):
            with open(path,"r") as f:
                config = yaml.load(f)
                logging.config.dictConfig(config)
        else:
            logging.basicConfig(level = default_level)
    
    def func():
        logging.info("start func")
    
        logging.info("exec func")
    
        logging.info("end func")
    
    if __name__ == "__main__":
        setup_logging(default_path = "logging.yaml")
        func()
    

    Reference
    http://www.cnblogs.com/zhbzz2007/p/5943685.html

    相关文章

      网友评论

          本文标题:2019-03-04 Python标准模块logging的使用

          本文链接:https://www.haomeiwen.com/subject/wnjiuqtx.html