美文网首页
机器视觉技术在工业检测中的应用综述

机器视觉技术在工业检测中的应用综述

作者: 机器视觉前沿 | 来源:发表于2018-09-19 11:55 被阅读221次

机器视觉主要研究用计算机来模拟人的视觉功能,通过摄像机等得到图像,然后将它转换成数字化图像信号,再送入计算机,利用软件从中获取所需信息,做出正确的计算和判断,通过数字图像处理算法和识别算法,对客观世界的三维景物和物体进行形态和运动识别,根据识别结果来控制现场的设备动作。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分,计算机视觉是研究试图建立从图像或者多维数据中获取“所需信息”的人工智能识别系统。正广泛地应用于医学、军事、工业、农业等诸多领域中。

视觉技术研究与应用的必要性

视觉技术在国内外发展极其必要。2008年经济危机极大冲击了美国至全球的各个领域。美国汽车制造业 “Big Three”频临破产,进一步自动化是唯一出路。美国政府推行“Made in US” 计划。出台多个政策刺激鼓励企业技术发明创新,视觉技术的应用就显得非常必要。近年在国内,劳动力工资成本大幅提高,很多生产企业迁移到人力资源更低廉的国家和区域,食品、医药质量事件不断。“Made in China”在世界声誉亟需提高,为提高质量保持竞争力,各领域的视觉检测及高度自动化势在必行。视觉检测对工业自动化的重要性与日俱增,工业自动化需求对视觉技术的推动高度集成化。

国外典型研究与应用

对于机器视觉技术,世界各国都在研究与应用。1994年S.T rika等研究了一种基于机器视觉的多面体零件特征提取技术,获得零件特征。1998年,J.Merlet等将机器视觉技术应用于部件装配。同年, Du-Ming Tsai等将机器视觉和神经网络技术相结合, 实现对机械零件表面粗糙度的非接触测量。2003年,Eladaw .iA.E将机器视觉技术用于数控铣加工中, 以获得实时加工数据。日本的视觉识别机器人研究,从数量或研究成果看都占据着明显的领先地位.美英德韩也都在开展相关研究。国外的卡耐基-梅隆M.A.Smith等提出了一种在视频帧中检测文字的方法。韩国Soongsil大学的Kim基于支持向量机和Camshift算法检测视频帧中的文字。

国内典型研究与应用

相对国外,国内计算机视觉技术应用研究起步较晚,与国外有差距,还需进一步在深度、广度及实践方面作出努力。国内的李留格等采用BP神经网络来进行轮胎胎号字符识别;李朝辉等利用形态算子提取视频帧的高频分量,把文本字符从复杂的视频中分离出来;周详等利用改进的BP神经网络对字符进行识别,提高了识别率和识别速度。字符识别技术是机器视觉领域的一个重要分支,在文字信息处理,办公自动化、实时监控系统等高技术领域,都有重要的使用价值和理论意义。

机器视觉识别技术应用实例

当前,机器视觉已成功地应用于工业检测领域,大幅度地提高了产品的质量和生产效率。譬如,企业中用于检测输血袋编号。在血袋生产过程中,血袋上的字符编号的正确和唯一是必不可少的检测信息。依靠工人的肉眼逐条检测带状转印薄膜上的字符串,来追踪血袋编号是否错印,劳动强度大,效率低,不能从根本上保证检测质量。一旦血袋编号出现重印、错印将会发生严重医疗事故,因此一种基于机器视觉技术的血袋编号字符的提取、识别与错误反馈于一体的检测系统就适时、必要的诞生了,用以提高一次性血袋出厂编号的检测精度和自动化水平,保证产品质量,解决生产实际问题。

字符在线识别系统组成

为达到识别目的,识别系统由硬件和软件构成。硬件系统主要有血袋编号检测台机械结构、LED阵列照明系统、血袋编号图像采集系统、摄像机和计算机等。软件部分是系统的核心,主要由图像预处理、字符定位、字符倾斜校正、字符分割、字符识别等部分组成。

识别系统的实现

系统基于labVIEW编程、图像处理、微型计算机接口技术等实现输血袋的文字在线识别。使用图像灰度化技术、平滑、校正、直方图均衡化等技术进行图像预处理。使用投影定位法等对字符进行定位。使用投影法、模版匹配等进行倾斜角度调整。使用垂直投影法对字符进行分割。使用了BP神经网络来识别分割后的字符。为提高识别率,设计训练了三个神经网络:字母网络、数字网络、字母与数字网络。

实验结果

利用该系统做过多次实验,测试了大量数据,整体看,系统稳定可靠,系统对输血袋文字识别程度非常高。本系统提高生产效率和生产过程的自动化程度,并为机器视觉系统应用于此种生产线,提供了成功的先例和经验。但由于各种原因,也会对识别的结果有一定的影响,因此,在识别率方面,尚有一定的差距。

机器视觉技术在应用中存在问题

虽然机器视觉技术目前已广泛应用到各领域,但由于其自身或配套技术上仍有不完善的地方,要广泛的应用还有一定限制。而图像处理算法的效率高低是计算机视觉成功应用的关键,尽管国内外都提出一些新的算法, 但是大部分仍处于实验阶段。特别是有复杂背景的工业现场,对视觉识别技术的识别率和精度降低。

机器视觉技术应用前景极为广阔,目前应用于生产生活各领域,但我国发展滞后,在工业检测中离实用化、商业化还有差距,因此亟待提高我国机器视觉技术的发展速度和水平,达到工业生产的智能化、现代化,为我国的现代化建设做出应有贡献。

钢铁制造厂运用机器视觉优化效率及质量

钢铁制造过程中,辨识及追溯其产品是一项困难的任务。要快速且精准地查询、追溯、检索品项,几乎每个产业都将条形码辨识看作一项非常重要的技术,使得库存及库存控制系统有重大的进步。当一家日本钢铁制造商寻求方法提升辨识及追踪自家产品质量时,The Imaging Source 映美精相机的机器视觉产品为他们提供了解决方案。

机器视觉与条形码追溯:使用机器视觉进行条形码辨识,能很容易地追踪及检视大型钢铁。

挑战:建立一套稳健的条形码辨识系统

线性(一维)条形码提供可靠的追踪及追溯功能已长达几十年。即使扫描条形码为非常简单且高度自动化的动作,但如果我们可精确地控制条形码在产品上的位置及方向,一维条形码仍为最稳健的扫描方式。然而,许多钢铁制品通常巨大笨重,增加扫描定位困难,许多钢铁工厂不得不选择以人工的方式追踪制品,例如快速喷漆、粉笔做记、人为辨别及手抄数据纪录等方式。而吵杂、繁忙、光线不足的工作环境、易耗损的卷标(记号)及其他人为因素(如工作疲乏等),皆可能导致产线出错,造成更多时间及金钱损失。

解决方案:变焦相机撷取条形码影像及可视化信息

钢铁工厂工程师选择The Imaging Source映美精相机的GigE 彩色变焦相机,搭配条形码辨识软件IC Barcode。变焦相机搭载全局及卷帘快门感光组件,提供130~500MP像素分辨率,包含电动变焦、聚焦及光圈控制,通过以太网络供电GigE接口驱动。安装于输送带上的相机,即便与物体的距离改变或没有定位于最佳位置,光学变焦功使其不仅能撷取条形码影像,还可以实时获得其他可视化信息,检查产品是否有瑕疵,把控产品质量。

变焦相机安装于生产线:即便不是定位在最准确的位置,也能撷取条形码影像与其他可视化信息,把控产品质量。

通过相机的GigE接口,影像数据便转换至主计算机。不同于激光扫描系统,图像式条形码辨识并不仅限于一维条形码,该系统使产线经理可以使用一维或二维条形码,甚或两者同时交替使用。例如,IC Barcode软件高效稳健的条形码辨识算法,能够迅速地侦测并辨识任何方位的一维与二维条形码。此外,也可设定只扫描特定条形码图形及方位,或设定感兴趣区域(ROI)来加速侦测及解码。同时,IC Barcode将条形码图像数据转换成可用的讯息并储存于主计算机中,供未来读取使用。

在质量管控上,钢铁制品常常出现各种表面瑕疵。因此,增设图像式条形码系统能够提升质量控制效益。The Imaging Source映美精相机的产品内置光学镜头,可快速调整以捕获钢铁制品图像,帮助品管经理通过机器视觉技术来检查产品。该视觉系统有助于减少高代价错误,提升管控效率,提高精准度及员工的安全性。

国内机器视觉发展如何实现逆风翻盘?

我国机器视觉产业发展起步晚,但增速迅猛,技术集中且升级较快。当下,国内机器视觉发展的重要任务,是深耕好电子和半导体领域主要市场,在此基础上不断开拓出更加智能化、数字化的细分市场。

全球机器视觉发展至今,已有三十余年历史,我国机器视觉从90年代末发展以来,也已经有了十余年的发展经验。在这个过程中,图像处理、光学成像、传感器、处理器等技术的飞速崛起带动了机器视觉的蓬勃发展,各种新概念、新理论的不断涌现,也使得机器视觉技术与时俱进、日久弥新。

随着生产逐渐从劳动密集型向技术密集型转移,我国对能提效增速、减少成本的机器视觉技术需求也愈发旺盛,在国际先进机器视觉企业和国内企业的共同作用下,如今,我国已经成为机器视觉技术的主要集散地,同时,国内市场也已成为全球机器视觉产业发展的主要市场之一。

国内机器视觉发展现状

一直以来,全球机器视觉市场都保持着稳定发展态势,从2015年至2017年,全球机器视觉市场规模从40多亿美元扩大到70多亿美元,年均增长率维持在两位数左右,相关机构预测,至2020年全球市场将突破百亿大关,2025年将争取达到200亿。

目前,美国和日本占据着全球机器视觉市场超过一半的份额,而我国因为起步较晚,与其差距较大。2015年我国机器视觉市场为3.5亿美元,仅占全球市场份额的8%左右。

不过,随着十三五规划对制造业技术创新的强调,和中国制造2025战略的持续推进,我国机器视觉迎来了爆发式增长。进入工业4.0时代以来,国内机器视觉市场常年以20%以上的增速飞速发展,并将继续维持这个全球领先的增速对前面国家实现追赶。

辰视智能在工业级机器视觉领域也有多年深耕,并研发出工业机器人3D视觉引导系统、二维定位以及检测等国内领先的技术。

市场在高速增长,持续扩大的同时,机器视觉先进技术也在不断向国内市场聚集。一方面缘于国外企业带来了先进系统和技术,另一方面主要得益于国内技术的自我发展。据了解,从2016年以来,国内机器视觉技术相关专利申请常年连续两年维持在1000项以上,为2010年以来的最大值,这个成绩相对于全球机器视觉专利的数量来说也很亮眼。

遗憾的是,虽然专利申请众多,技术发展迅猛,但商业化落地程度却远远不够。因为如此众多的专利之中,基本都是大学或研究机构申请居多,企业专利相对较少,这就意味着国内大部分机器视觉技术仍然停留在研究和试验阶段,距离真正商业化应用还有一定距离。

电子和半导体领域为国内机器视觉增长主力

从全球应用领域的演变来看,机器视觉最初在电子和半导体领域获得了广泛应用。不少专家认为,国际机器视觉的崛起在一定程度上得益于电子和半导体行业的发展。

机器视觉具有测量、检测、识别、定位上的强大功能,在电子和半导体领域扮演者不可或缺的角色。一方面,在半导体大规模集成电路的产业链中,从上游加工切割,到末端印刷、贴片,都需要依赖高精度的机器视觉组件进行引导和定位;另一方面,在电子制造领域,从小型元器件到大型硬件设备,也都对机器视觉系统有旺盛需求。

如今,在国家缺芯事件如火如荼的时间节点,电子和半导体领域的发展越来越受到国家和行业的重视。《中国半导体产业“十三五”发展规划》就对大力发展集成电路产业提供了政策支持,计划2020年市场规模达到9000亿,在这样千亿市场需求的带动下,初步预计将给机器视觉带来30亿的规模增长。

眼下,在国际市场上,电子和半导体领域已经成为了机器视觉增长的主力军,占到了全行业市场需求的40-50%,而我国起步较晚,机器视觉的发展阶段还未与国际步调一致。因此,从国际市场发挥样板作用的角度来说,提高机器视觉在电子和半导体领域的渗透率,牢牢把握住这个掘金行业,将成为当前我国机器视觉发展的重要任务之一。

智慧城市、无人模式将成为未来增长带动点

把握主要发展领域的同时,由于新的发展趋势也在不断繁衍,新技术和新标准在不断革新,国内机器视觉发展还需要紧跟时代潮流。如今,在智能化的趋势下,智慧城市和无人模式的出现有望成为机器视觉发展新的增长点。

不管是智慧城市建设下的智能交通管理、自动驾驶、智能安防,还是无人模式下的无人商店、无人物流,机器视觉技术都是这些新概念发展的前提,预计在未来3-5年内,不少企业和政府机构都将积极拥抱机器视觉技术。

当然,市场和需求的增加,同样也对机器视觉本身提出了更高的技术要求,数字化、智能化、实时化逐渐成为企业未来发展方向,与其他技术的融合和跨领域合作成为机器视觉必须要踏出的一步,只有做好了这些,才能在耕耘好主要市场的情况下,开拓出更多的增长点。

深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。

辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统 、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。

相关文章

  • 机器视觉技术在工业检测中的应用综述

    机器视觉主要研究用计算机来模拟人的视觉功能,通过摄像机等得到图像,然后将它转换成数字化图像信号,再送入计算机,利用...

  • 机器视觉技术在工业检测中的应用综述

    机器视觉主要研究用计算机来模拟人的视觉功能,通过摄像机等得到图像,然后将它转换成数字化图像信号,再送入计算机,利用...

  • 机器视觉在工业检测中的应用

    机器视觉技术正在被广泛地应用于各种生产活动,可以说需要人类视觉的场合几乎都有机器视觉的应用,特别是在许多人类视觉无...

  • 自动光学检测仪的水冷散热解决方案

    自动光学检查为工业自动化有效的检测方法,使用机器视觉做为检测标准技术,大量应用于LCD/TFT、晶体管与PCB工业...

  • 工业机器视觉市场调研

    机器视觉是人工智能一个重要的研究和应用方向。工业机器视觉是指机器视觉在工业现场的应用,在智能制造领域被称作“智慧之...

  • 工业视觉投资机遇

    为什么需要工业视觉 所谓工业视觉主要指机器视觉在工业上的应用,机器视觉系统主要由图像的获取、图像的处理和分析、输出...

  • 机器视觉技术推动工业自动化不断创新?

    CNC分析 如今,随着工业4.0的到来,机器视觉技术在工业自动化中逐渐起着十分重要的地位,机器视觉技术的不断创新,...

  • 机器视觉的应用领域

    机器视觉是人工智能正在快速发展的一个分支。机器视觉作为生产过程中关键技术之一,在机器或者生产线上,机器视觉可以检测...

  • 机器视觉检测哪家比较专业?

    机器视觉指的是“针对所有硬件和软件相结合的工业和非工业应用的设备提供操作引导的技术,该技术基于图像采集和处理功能。...

  • 机器视觉在缺陷检测中的应用

    在现代工业连续、大批量自动化生产中,涉及各种各样的质量检测,如工件表面是否有划痕、印刷品是否有油污或破损、字符印刷...

网友评论

      本文标题:机器视觉技术在工业检测中的应用综述

      本文链接:https://www.haomeiwen.com/subject/wotinftx.html