摘自知乎mit线代笔记。
https://zhuanlan.zhihu.com/p/28277072
只作为自己学习和复习参考
一、方程组的几何解释基础
本节开始,我们一起来学习线性代数的有关知识,首节我们从解方程谈起,学习线性代数的应用之一就是求解复杂方程问题,本节核心之一即为从行图像与列图像的角度解方程。
1 .二维的行图像
我们首先通过一个例子来从行图像角度求解方程:


2.二维的列图像


3.高维行图像

4.高维列图像


那么我们重新寻找一个线性组合就够了,但是如果我们使用的是行图像呢?那意味着我们要完全重画三个平面图像,就简便性来讲,两种方法高下立判。


5.矩阵乘法

二、消元法求解方程
这一节中我们介绍一下消元法,即是上一节中我们提到的“系统化”求解方程 所用的方法,通过矩阵消元运算可以很轻松地求解复杂方程。
另外还介绍了消元 矩阵,即我们的消元运算在矩阵乘法中所表现的形式。并从消元矩阵引入,介绍 逆矩阵的基础知识。
1.消元法介绍


另一种表述:




2.消元矩阵




看到这里就可以理解为什么初等矩阵E是只有一次初等变换的矩阵了,为的就是对矩阵中特定位置进行消元。
3.置换矩阵与逆矩阵


三、矩阵乘法
前面介绍了向量与矩阵之间的乘法,这一节我们要介绍两个矩阵之间的乘法。 并讨论逆矩阵存在的条件。最后又介绍了求解逆矩阵的方法。
补充:矩阵运算的意义




1.矩阵乘法最常见求解方式


2.列组合与行组合方式






3.逆矩阵
3.1 逆矩阵介绍

3.2 逆矩阵求解

四、矩阵的LU分解
这一节中首先完善之前讲到的逆矩阵内容,然后使用消元矩阵介绍 A 的 LU 分 解,即:将矩阵 A 分解为矩阵 L 与上三角矩阵 U,介绍这种运算的普遍规律。
首先引入转置矩阵的概念

上面公式的详细证明如下:


而当时,称
为反对称矩阵。
转置矩阵结合逆矩阵有如下公式:



1.矩阵的 LU 分解
前几节讲到了通过消元矩阵实现行变换来完成高斯消元的整个过程,将矩阵A变成了上三角矩阵U,接下来更进一步讲矩阵的LU分解。


2.LU分解的意义
LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。LU分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。
再回去看一下LU分解的定义:




这里引入上三角和下三角矩阵的求逆公式:

总结如下:


3.置换矩阵

列交换与行交换类似,但是需要将左乘变为右乘。

在LU分解基础上,再看置换矩阵的定义


注意置换矩阵的定义并非互换两行,而是互换多行(包括两行),当仅互换两行时(很容易理解,互换两行后,变换回来只需要再一次互换这两行就行了)
网友评论