ES 建索引时默认是根据文档标识符 _id 将文档均分至多个分片。当搜索数据时,默认查询所有分片结果然后汇总,而并不必须知道数据到底存在哪个分片上。
路由算法就是根据routing和文档id计算目标shardid的过程。
一般情况下,路由计算方式为下面的公式:
shard_num = hash(_routing) % num_primary_shards
默认情况下,_routing值就是文档id。
ES使用随机id和Hash算法来确保文档均匀地分配给分片。当使用自定义id或routing时, id 或 routing 值可能不够随机,造成数据倾斜,部分分片过大。在这种情况下,可以使用index.routing_partition_size
配置来减少倾斜的风险。routing_partition_size
越大,数据的分布越均匀。
在设置了index.routing_partition_size的情况下,计算公式为:
shard_num = (hash(_routing) + hash(_id) % routing_partition_size) % num_primary_shards
也就是说,对于同一个routing值,hash(_routing)的结果固定的,hash(_id) % routing_partition_size的结果有 routing_partition_size 个可能的值,两个组合在一起,对于同一个routing值的多个doc,也就能计算出 routing_partition_size 可能的shard了,即一个shard集合。
index.routing_partition_size取值应具有大于1且小于index.number_of_shards的值
计算过程的实现如下
private static int calculateScaledShardId(IndexMetaData indexMetaData, String effectiveRouting, int partitionOffset) {
final int hash = Murmur3HashFunction.hash(effectiveRouting) + partitionOffset;
// we don't use IMD#getNumberOfShards since the index might have been shrunk such that we need to use the size
// of original index to hash document
return Math.floorMod(hash, indexMetaData.getRoutingNumShards()) / indexMetaData.getRoutingFactor();
}
Search时如何根据routing找到指定的分片?
例子
GET /{index}/{type}/_search?routing=beijing
通过发送search请求查询数据。指定了routing是beijing
1、解析流程
当es接收到上面的请求时,交给org.elasticsearch.rest.action.search.RestSearchAction
处理,repareRequest方法中将请求体解析为SearchRequest数据结构
public RestChannelConsumer prepareRequest(final RestRequest request, final NodeClient client) throws IOException {
SearchRequest searchRequest = new SearchRequest();
IntConsumer setSize = size -> searchRequest.source().size(size);
request.withContentOrSourceParamParserOrNull(parser ->
parseSearchRequest(searchRequest, request, parser, setSize));
return channel -> client.search(searchRequest, new RestStatusToXContentListener<>(channel));
}
public static void parseSearchRequest(SearchRequest searchRequest, RestRequest request,
XContentParser requestContentParser,
IntConsumer setSize) throws IOException {
String searchType = request.param("search_type");
parseSearchSource(searchRequest.source(), request, setSize); searchRequest.requestCache(request.paramAsBoolean("request_cache", null));
String scroll = request.param("scroll");
searchRequest.routing(request.param("routing")); //接收到routing参数,并封装到searchRequest中
searchRequest.preference(request.param("preference"));
searchRequest.indicesOptions(IndicesOptions.fromRequest(request, searchRequest.indicesOptions())); searchRequest.setCcsMinimizeRoundtrips(request.paramAsBoolean("ccs_minimize_roundtrips", true));
checkRestTotalHits(request, searchRequest);
}
构造目的shard列表
prepareRequest方法构造请求后通过transport模块发送给org.elasticsearch.action.search.TransportSearchAction
处理
private void executeSearch(SearchTask task, SearchTimeProvider timeProvider, SearchRequest searchRequest,
OriginalIndices localIndices, String[] concreteIndices, Map<String, Set<String>> routingMap,
Map<String, AliasFilter> aliasFilter, Map<String, Float> concreteIndexBoosts,
List<SearchShardIterator> remoteShardIterators, BiFunction<String, String, DiscoveryNode> remoteConnections,
ClusterState clusterState, ActionListener<SearchResponse> listener, SearchResponse.Clusters clusters) {
Map<String, Long> nodeSearchCounts = searchTransportService.getPendingSearchRequests();
GroupShardsIterator<ShardIterator> localShardsIterator = clusterService.operationRouting().searchShards(clusterState,
concreteIndices, routingMap, searchRequest.preference(), searchService.getResponseCollectorService(), nodeSearchCounts);
GroupShardsIterator<SearchShardIterator> shardIterators = mergeShardsIterators(localShardsIterator, localIndices,
searchRequest.getLocalClusterAlias(), remoteShardIterators);
。。。。
}
将请求涉及的本集群shard列表和远程集群的shard列表(远程集群用于跨集群访问)合并
其中routing查找指定分片的流程就在org.elasticsearch.cluster.routing.OperationRouting.searchShards(ClusterState, String[], Map<String, Set<String>>, String, ResponseCollectorService, Map<String, Long>)
方法中
public GroupShardsIterator<ShardIterator> searchShards(ClusterState clusterState,
String[] concreteIndices,
@Nullable Map<String, Set<String>> routing,
@Nullable String preference,
@Nullable ResponseCollectorService collectorService,
@Nullable Map<String, Long> nodeCounts) {
final Set<IndexShardRoutingTable> shards = computeTargetedShards(clusterState, concreteIndices, routing);
····
}
private Set<IndexShardRoutingTable> computeTargetedShards(ClusterState clusterState, String[] concreteIndices,
@Nullable Map<String, Set<String>> routing) {
for (String index : concreteIndices) {
····
if (effectiveRouting != null) {
for (String r : effectiveRouting) {
set.add(RoutingTable.shardRoutingTable(indexRouting, calculateScaledShardId(indexMetaData, r, partitionOffset)));
}
}
return set;
}
最终调用calculateScaledShardId方法计算出指定的分片
网友评论