NLP入门(一)词袋模型及句子相似度

作者: 山阴少年 | 来源:发表于2018-11-01 11:58 被阅读5次

  本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代。
  本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity)。
  首先,让我们来看一下,什么是词袋模型。我们以下面两个简单句子为例:

sent1 = "I love sky, I love sea."
sent2 = "I like running, I love reading."

  通常,NLP无法一下子处理完整的段落或句子,因此,第一步往往是分句和分词。这里只有句子,因此我们只需要分词即可。对于英语句子,可以使用NLTK中的word_tokenize函数,对于中文句子,则可使用jieba模块。故第一步为分词,代码如下:

from nltk import word_tokenize
sents = [sent1, sent2]
texts = [[word for word in word_tokenize(sent)] for sent in sents]

输出的结果如下:

[['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]

  分词完毕。下一步是构建语料库,即所有句子中出现的单词及标点。代码如下:

all_list = []
for text in texts:
    all_list += text
corpus = set(all_list)
print(corpus)

输出如下:

{'love', 'running', 'reading', 'sky', '.', 'I', 'like', 'sea', ','}

  可以看到,语料库中一共是8个单词及标点。接下来,对语料库中的单词及标点建立数字映射,便于后续的句子的向量表示。代码如下:

corpus_dict = dict(zip(corpus, range(len(corpus))))
print(corpus_dict)

输出如下:

{'running': 1, 'reading': 2, 'love': 0, 'sky': 3, '.': 4, 'I': 5, 'like': 6, 'sea': 7, ',': 8}

  虽然单词及标点并没有按照它们出现的顺序来建立数字映射,不过这并不会影响句子的向量表示及后续的句子间的相似度。
  下一步,也就是词袋模型的关键一步,就是建立句子的向量表示。这个表示向量并不是简单地以单词或标点出现与否来选择0,1数字,而是把单词或标点的出现频数作为其对应的数字表示,结合刚才的语料库字典,句子的向量表示的代码如下:

# 建立句子的向量表示
def vector_rep(text, corpus_dict):
    vec = []
    for key in corpus_dict.keys():
        if key in text:
            vec.append((corpus_dict[key], text.count(key)))
        else:
            vec.append((corpus_dict[key], 0))

    vec = sorted(vec, key= lambda x: x[0])

    return vec

vec1 = vector_rep(texts[0], corpus_dict)
vec2 = vector_rep(texts[1], corpus_dict)
print(vec1)
print(vec2)

输出如下:

[(0, 2), (1, 0), (2, 0), (3, 1), (4, 1), (5, 2), (6, 0), (7, 1), (8, 1)]
[(0, 1), (1, 1), (2, 1), (3, 0), (4, 1), (5, 2), (6, 1), (7, 0), (8, 1)]

让我们稍微逗留一会儿,来看看这个向量。在第一句中I出现了两次,在预料库字典中,I对应的数字为5,因此在第一句中5出现2次,在列表中的元组即为(5,2),代表单词I在第一句中出现了2次。以上的输出可能并不那么直观,真实的两个句子的代表向量应为:

[2, 0, 0, 1, 1, 2, 0, 1, 1]
[1, 1, 1, 0, 1, 2, 1, 0, 1]

  OK,词袋模型到此结束。接下来,我们会利用刚才得到的词袋模型,即两个句子的向量表示,来计算相似度。
  在NLP中,如果得到了两个句子的向量表示,那么,一般会选择用余弦相似度作为它们的相似度,而向量的余弦相似度即为两个向量的夹角的余弦值。其计算的Python代码如下:

from math import sqrt
def similarity_with_2_sents(vec1, vec2):
    inner_product = 0
    square_length_vec1 = 0
    square_length_vec2 = 0
    for tup1, tup2 in zip(vec1, vec2):
        inner_product += tup1[1]*tup2[1]
        square_length_vec1 += tup1[1]**2
        square_length_vec2 += tup2[1]**2

    return (inner_product/sqrt(square_length_vec1*square_length_vec2))


cosine_sim = similarity_with_2_sents(vec1, vec2)
print('两个句子的余弦相似度为: %.4f。'%cosine_sim)

输出结果如下:

两个句子的余弦相似度为: 0.7303。

  这样,我们就通过句子的词袋模型,得到了它们间的句子相似度。
  当然,在实际的NLP项目中,如果需要计算两个句子的相似度,我们只需调用gensim模块即可,它是NLP的利器,能够帮助我们处理很多NLP任务。下面为用gensim计算两个句子的相似度的代码:

sent1 = "I love sky, I love sea."
sent2 = "I like running, I love reading."

from nltk import word_tokenize
sents = [sent1, sent2]
texts = [[word for word in word_tokenize(sent)] for sent in sents]
print(texts)

from gensim import corpora
from gensim.similarities import Similarity

#  语料库
dictionary = corpora.Dictionary(texts)

# 利用doc2bow作为词袋模型
corpus = [dictionary.doc2bow(text) for text in texts]
similarity = Similarity('-Similarity-index', corpus, num_features=len(dictionary))
print(similarity)
# 获取句子的相似度
new_sensence = sent1
test_corpus_1 = dictionary.doc2bow(word_tokenize(new_sensence))

cosine_sim = similarity[test_corpus_1][1]
print("利用gensim计算得到两个句子的相似度: %.4f。"%cosine_sim)

输出结果如下:

[['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]
Similarity index with 2 documents in 0 shards (stored under -Similarity-index)
利用gensim计算得到两个句子的相似度: 0.7303。

注意,如果在运行代码时出现以下warning:

gensim\utils.py:1209: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")

gensim\matutils.py:737: FutureWarning: Conversion of the second argument of issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be treated as `np.int32 == np.dtype(int).type`.
  if np.issubdtype(vec.dtype, np.int):

如果想要去掉这些warning,则在导入gensim模块的代码前添加以下代码即可:

import warnings
warnings.filterwarnings(action='ignore',category=UserWarning,module='gensim')
warnings.filterwarnings(action='ignore',category=FutureWarning,module='gensim')

  本文到此结束,感谢阅读!如果不当之处,请速联系笔者,欢迎大家交流!祝您好运~

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

相关文章

  • NLP入门(一)词袋模型及句子相似度

      本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代。  本文将会介绍NLP中常见的词袋模型(Ba...

  • 中文分词

    一、NLP文本相似度 内容: 1.NLP(自然语言处理入门) TF-IDF、 关键词提取、LCS最长公共子序列 2...

  • 第八章 自然语言处理

    文本建模 基于词袋模型的文章关键字提取、相似度分析。TF-IDF是一种词袋模型,作用是在一个由多个文章组成的文集中...

  • Wrod2vec计算句子相似度实战_3分钟热情学NLP第7篇

    3分钟热情学NLP第7篇,Wrod2vec计算句子相似度实战 方法1,计算句子中各个词向量,得出句子的平均值 1、...

  • python文本相似度计算

    步骤 分词、去停用词 词袋模型向量化文本 TF-IDF模型向量化文本 LSI模型向量化文本 计算相似度 理论知识 ...

  • 计算句子相似度

    计算句子相似度,①常用方法有基于语义和词序相似度计算方法,②基于关系向量模型基于语义和词序的句子相似度计算方法简介...

  • NLP-词向量:词袋模型

    一、前言 词袋模型是早些年使用的词向量模型,该模型假设每个词都是独立的,仅仅使用词在文章中的频率来决定如何表达词,...

  • Quora句子相似度匹配

    预备知识 NLP基础: 词袋模型(Bag-of-words model): TF-IDF算法(term frequ...

  • 词向量构造 - Tf-idf模型

    前面我们总结过词袋模型,词袋模型将文本中所有不重复的词看作一个集合,然后对文本中的每句话进行编码。在句子中对于出现...

  • 词向量技术-从word2vec到ELMo

    本文关键词:NLP、词向量、word2vec、ELMo、语言模型 0. 前言 "词和句子的嵌入已成为所有基于深度学...

网友评论

    本文标题:NLP入门(一)词袋模型及句子相似度

    本文链接:https://www.haomeiwen.com/subject/wvitxqtx.html