美文网首页
数据结构之二叉排序树

数据结构之二叉排序树

作者: smallmartial | 来源:发表于2019-06-22 10:40 被阅读0次

二叉排序数

1.二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

1561108535519.png

代码实现:

package cn.smallmartial.binarySortTree;

/**
 * @Author smallmartial
 * @Date 2019/6/21
 * @Email smallmarital@qq.com
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7,3,10,12,5,1,9};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        System.out.println("中序遍历二叉树");
        binarySortTree.infixOrder();
    }
}
//创建二叉排序树
class BinarySortTree{
    private Node root;
    //添加节点的方法
    public void add(Node node){
        if (root == null){
            root = node;
        }else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node{

    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加节点方法
    public void add(Node node){
        if (node == null){
            return;
        }

        //判断传入结点的值,和当前子树的根节点的关系
        if (node.value < this.value){
            //如果当前左子节点为null
            if (this.left == null){
                this.left = node;
            }else {
                this.left.add(node);
            }
        }else {
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }

        System.out.println(this);

        if (this.right !=null){
            this.right.infixOrder();
        }

    }

}

2.二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

1)删除叶子节点 (比如:2, 5, 9, 12)

2)删除只有一颗子树的节点 (比如:1)

3)删除有两颗子树的节点. (比如:7, 3,10 )

2.1思路分析

  • 第一种情况:
    删除叶子节点 (比如:2, 5, 9, 12)
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 确定 targetNode 是 parent的左子结点 还是右子结点
    (4) 根据前面的情况来对应删除
    左子结点 parent.left = null
    右子结点 parent.right = null;

  • 第二种情况: 删除只有一颗子树的节点 比如 1
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 确定targetNode 的子结点是左子结点还是右子结点
    (4) targetNode 是 parent 的左子结点还是右子结点
    (5) 如果targetNode 有左子结点

    5.1 如果 targetNode 是 parent 的左子结点
    parent.left = targetNode.left;
    5.2 如果 targetNode 是 parent 的右子结点
    parent.right = targetNode.left;
    (6) 如果targetNode 有右子结点
    6.1 如果 targetNode 是 parent 的左子结点
    parent.left = targetNode.right;
    6.2 如果 targetNode 是 parent 的右子结点
    parent.right = targetNode.right

  • 情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 从targetNode 的右子树找到最小的结点
    (4) 用一个临时变量,将 最小结点的值保存 temp = 11
    (5) 删除该最小结点
    (6) targetNode.value = temp

2.2代码实现

package cn.smallmartial.binarySortTree;

/**
 * @Author smallmartial
 * @Date 2019/6/21
 * @Email smallmarital@qq.com
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7,3,10,12,5,1,9,2};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        System.out.println("中序遍历二叉树");
        binarySortTree.infixOrder();

       // binarySortTree.delNode(2);
        //binarySortTree.delNode(5);
      //  binarySortTree.delNode(1);
        binarySortTree.delNode(7);

        System.out.println("删除键节点后");
        binarySortTree.infixOrder();
    }
}
//创建二叉排序树
class BinarySortTree{
    private Node root;

    //查找要删除的节点
    public Node search(int value){
        if (root == null){
            return null;
        }else {
            return root.search(value);
        }
    }

    //查找父节点
    public Node searchParent(int value){
        if (root == null){
            return null;
        }else {
            return root.searchParent(value);
        }
    }

    /**
     *
     * @param node 传入节点 作为二叉排序树的根节点
     * @return
     */
    public int delRightTreeMin(Node node){
        Node target = node;
        while (target.left != null){
            target = target.left;
        }
        //删除最小节点
        delNode(target.value);
        return target.value;
    }

    //删除节点
    public void delNode(int value){
        if (root == null){
            return;
        }else {
            Node targetNode = search(value);
            if (targetNode == null){
                return;
            }

            if (root.left == null && root.right == null){
                root = null;
                return;
            }

            //去找到targetNode的父节点
            Node parent = searchParent(value);

            if (targetNode.left == null && targetNode.right == null){
                //判断targetNode是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value){
                    parent.left  = null;
                }else if (parent.right != null && parent.right.value == value){
                    parent.right = null;
                }
            }else if (targetNode.left!= null && targetNode.right !=null){//删除有2颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            }else {//删除只有一颗子树的节点
            if (targetNode.left !=null){
                if (parent.left.value == value){
                    parent.left = targetNode.left;
                }else {
                    parent.right = targetNode.left;
                }
            }else {
                if (parent.left.value == value){
                    parent.left = targetNode.right;
                }else {
                    parent.right = targetNode.right;
                }
            }

            }
        }


    }

    //添加节点的方法
    public void add(Node node){
        if (root == null){
            root = node;
        }else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node{

    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    /**
     *查找删除的节点
     * @param value
     * @return
     */
    //查找删除节点
    public Node search(int value){
        if (value == this.value){
            return this;
        }else  if(value <this.value){//如果查找当前的值小于当前节点,向左递归查找
            //如果左子节点为空
            if (this.left == null){
                return null;
            }
            return this.left.search(value);
        }else {//如果查找当前的值不小于当前节点,向小递归查找
            if (this.right == null){
                return null;
            }
            return this.right.search(value);

        }
    }
    //查找要删除节点的父节点
    public Node searchParent(int value){
        if (this.left != null && this.left.value == value ||(this.right != null && this.right.value == value)){
            return this;
        }else {
            //如果查找的值小于当前结点的值,并且当前节点的左子节点不为空
            if (value < this.value && this.left != null){
                return this.left.searchParent(value);
            }else if (value >= this.value && this.right != null){
                return this.right.searchParent(value);
            }else {
                return null;
            }
        }
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加节点方法
    public void add(Node node){
        if (node == null){
            return;
        }

        //判断传入结点的值,和当前子树的根节点的关系
        if (node.value < this.value){
            //如果当前左子节点为null
            if (this.left == null){
                this.left = node;
            }else {
                this.left.add(node);
            }
        }else {
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }

        System.out.println(this);

        if (this.right !=null){
            this.right.infixOrder();
        }

    }

}

相关文章

  • 数据结构实验之查找一:二叉排序树

    数据结构实验之查找一:二叉排序树 Time Limit: 400MS Memory Limit: 65536KB ...

  • iOS标准库中常用数据结构和算法之二叉排序树

    上一篇:iOS标准库中常用数据结构和算法之排序 ?二叉排序树 功能:二叉排序树的标准实现是一颗平衡二叉树。二叉排序...

  • 2018-06-19/20 机试准备09

    数据结构 四、二叉排序树 对二叉排序树进行中序遍历 结果必然是一个递增序列 所以通过建立二叉排序树可以对无序序列进...

  • 数据结构05-二叉排序树

    数据结构05-二叉排序树 一、二叉排序树的介绍 二叉排序树 或者是一颗空树,或者是一颗具有如下性质的树: 若左子...

  • 彻底弄懂二叉排序树

    彻底弄懂二叉排序树 前言 在之前学习数据结构的时候,就学过二叉排序树,不过,由于但是只是纸上谈兵,虽然知道二叉排序...

  • 数据库索引

    索引的本质 索引是帮助MySQL高效获取数据的排好序的数据结构 索引的数据结构 二叉排序树 红黑树(二叉平衡树) ...

  • 哈希算法

    哈希(Hash)或者说散列表,它是一种基础数据结构。Hash 表是一种特殊的数据结构,它同数组、链表以及二叉排序树...

  • 七、二叉树(八)、二叉排序树

    数据结构目录[https://www.jianshu.com/p/c22b5cb2d79b] 一、定义 二叉排序树...

  • 数据结构题目:树

    数据结构题目:树 题目:二叉排序树的构建与遍历 c++: 转码似乎有点问题,用utf-8就行了 java:

  • MySQL索引原理

    数据结构 二叉排序树(Binary Sort Tree) 规则 若左子树不空,则左子树上所有节点的值均小于它的根节...

网友评论

      本文标题:数据结构之二叉排序树

      本文链接:https://www.haomeiwen.com/subject/wwemqctx.html