本文用来介绍 iOS 多线程中 GCD 的相关知识以及使用方法。这大概是史上最详细、清晰的关于 GCD 的详细讲解 + 总结 的文章了。通过本文,您将了解到:
1. GCD 简介
2. GCD 任务和队列
3. GCD 的使用步骤
4. GCD 的基本使用(六种组合不同区别,队列嵌套情况区别,相互关系形象理解)
5. GCD 线程间的通信
6. GCD 的其他方法(栅栏方法:dispatch_barrier_async、延时执行方法:dispatch_after、一次性代码(只执行一次):dispatch_once、快速迭代方法:dispatch_apply、队列组:dispatch_group、信号量:dispatch_semaphore)
1. GCD 简介
什么是 『GCD』 ?我们先来看看百度百科的解释简单了解下相关概念。
那为什么我们要使用 GCD 呢?
因为使用 GCD 有很多好处啊,具体如下:
- GCD 可用于多核的并行运算;
- GCD 会自动利用更多的 CPU 内核(比如双核、四核);
- GCD 会自动管理线程的生命周期(创建线程、调度任务、销毁线程);
- 程序员只需要告诉 GCD 想要执行什么任务,不需要编写任何线程管理代码。
GCD 拥有以上这么多的好处,而且在多线程中处于举足轻重的地位。那么我们就很有必要系统地学习一下 GCD 的使用方法。
2. GCD 任务和队列
学习 GCD 之前,先来了解 GCD 中两个核心概念:『任务』 和 『队列』。
任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。在 GCD 中是放在 block 中的。执行任务有两种方式:『同步执行』 和 『异步执行』。两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。
-
同步执行(sync):
- 同步添加任务到指定的队列中,在添加的任务执行结束之前,会一直等待,直到队列里面的任务完成之后再继续执行。
- 只能在当前线程中执行任务,不具备开启新线程的能力。
-
异步执行(async):
- 异步添加任务到指定的队列中,它不会做任何等待,可以继续执行任务。
- 可以在新的线程中执行任务,具备开启新线程的能力。
举个简单例子:你要打电话给小明和小白。
『同步执行』 就是:你打电话给小明的时候,不能同时打给小白。只有等到给小明打完了,才能打给小白(等待任务执行结束)。而且只能用当前的电话(不具备开启新线程的能力)。
『异步执行』 就是:你打电话给小明的时候,不用等着和小明通话结束(不用等待任务执行结束),还能同时给小白打电话。而且除了当前电话,你还可以使用其他一个或多个电话(具备开启新线程的能力)。
注意:异步执行(async)虽然具有开启新线程的能力,但是并不一定开启新线程。这跟任务所指定的队列类型有关(下面会讲)。
队列(Dispatch Queue):这里的队列指执行任务的等待队列,即用来存放任务的队列。队列是一种特殊的线性表,采用 FIFO(先进先出)的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。每读取一个任务,则从队列中释放一个任务。队列的结构可参考下图:
image在 GCD 中有两种队列:『串行队列』 和 『并发队列』。两者都符合 FIFO(先进先出)的原则。两者的主要区别是:执行顺序不同,以及开启线程数不同。
-
串行队列(Serial Dispatch Queue):
- 每次只有一个任务被执行。让任务一个接着一个地执行。(只开启一个线程,一个任务执行完毕后,再执行下一个任务)
-
并发队列(Concurrent Dispatch Queue):
- 可以让多个任务并发(同时)执行。(可以开启多个线程,并且同时执行任务)
注意:并发队列 的并发功能只有在异步(dispatch_async)方法下才有效。
两者具体区别如下两图所示:
image image3. GCD 的使用步骤
GCD 的使用步骤其实很简单,只有两步:
- 创建一个队列(串行队列或并发队列);
- 将任务追加到任务的等待队列中,然后系统就会根据任务类型执行任务(同步执行或异步执行)。
下边来看看队列的创建方法 / 获取方法,以及任务的创建方法。
3.1 队列的创建方法 / 获取方法
- 可以使用
dispatch_queue_create
方法来创建队列。该方法需要传入两个参数:- 第一个参数表示队列的唯一标识符,用于 DEBUG,可为空。队列的名称推荐使用应用程序 ID 这种逆序全程域名。
- 第二个参数用来识别是串行队列还是并发队列。
DISPATCH_QUEUE_SERIAL
表示串行队列,DISPATCH_QUEUE_CONCURRENT
表示并发队列。
// 串行队列的创建方法
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_SERIAL);
// 并发队列的创建方法
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_CONCURRENT);
- 对于串行队列,GCD 默认提供了:『主队列(Main Dispatch Queue)』。
- 所有放在主队列中的任务,都会放到主线程中执行。
- 可使用
dispatch_get_main_queue()
方法获得主队列。
注意:主队列其实并不特殊。 主队列的实质上就是一个普通的串行队列,只是因为默认情况下,当前代码是放在主队列中的,然后主队列中的代码,有都会放到主线程中去执行,所以才造成了主队列特殊的现象。
// 主队列的获取方法
dispatch_queue_t queue = dispatch_get_main_queue();
- 对于并发队列,GCD 默认提供了 『全局并发队列(Global Dispatch Queue)』。
- 可以使用
dispatch_get_global_queue
方法来获取全局并发队列。需要传入两个参数。第一个参数表示队列优先级,一般用DISPATCH_QUEUE_PRIORITY_DEFAULT
。第二个参数暂时没用,用0
即可。
- 可以使用
// 全局并发队列的获取方法
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
3.2 任务的创建方法
GCD 提供了同步执行任务的创建方法 dispatch_sync
和异步执行任务创建方法 dispatch_async
。
// 同步执行任务创建方法
dispatch_sync(queue, ^{
// 这里放同步执行任务代码
});
// 异步执行任务创建方法
dispatch_async(queue, ^{
// 这里放异步执行任务代码
});
虽然使用 GCD 只需两步,但是既然我们有两种队列(串行队列 / 并发队列),两种任务执行方式(同步执行 / 异步执行),那么我们就有了四种不同的组合方式。这四种不同的组合方式是:
- 同步执行 + 并发队列
- 异步执行 + 并发队列
- 同步执行 + 串行队列
- 异步执行 + 串行队列
实际上,刚才还说了两种默认队列:全局并发队列、主队列。全局并发队列可以作为普通并发队列来使用。但是当前代码默认放在主队列中,所以主队列很有必要专门来研究一下,所以我们就又多了两种组合方式。这样就有六种不同的组合方式了。
- 同步执行 + 主队列
- 异步执行 + 主队列
那么这几种不同组合方式各有什么区别呢?
这里我们先上结论,后面再来详细讲解。你可以直接查看 3.3 任务和队列不同组合方式的区别 中的表格结果,然后跳过 4. GCD的基本使用 继续往后看。
3.3 任务和队列不同组合方式的区别
我们先来考虑最基本的使用,也就是当前线程为 『主线程』 的环境下,『不同队列』+『不同任务』 简单组合使用的不同区别。暂时不考虑 『队列中嵌套队列』 的这种复杂情况。
『主线程』中,『不同队列』+『不同任务』简单组合的区别:
| 区别 | 并发队列 | 串行队列 | 主队列 |
| ---> | ---> | ---> | ---> |
| 同步(sync) | 没有开启新线程,串行执行任务 | 没有开启新线程,串行执行任务 | 死锁卡住不执行 |
| 异步(async) | 有开启新线程,并发执行任务 | 有开启新线程(1条),串行执行任务 | 没有开启新线程,串行执行任务 |
注意:从上边可看出: 『主线程』 中调用 『主队列』+『同步执行』 会导致死锁问题。
这是因为 主队列中追加的同步任务 和 主线程本身的任务 两者之间相互等待,阻塞了 『主队列』,最终造成了主队列所在的线程(主线程)死锁问题。
而如果我们在 『其他线程』 调用 『主队列』+『同步执行』,则不会阻塞 『主队列』,自然也不会造成死锁问题。最终的结果是:不会开启新线程,串行执行任务。
3.4 队列嵌套情况下,不同组合方式区别
除了上边提到的『主线程』中调用『主队列』+『同步执行』会导致死锁问题。实际在使用『串行队列』的时候,也可能出现阻塞『串行队列』所在线程的情况发生,从而造成死锁问题。这种情况多见于同一个串行队列的嵌套使用。
比如下面代码这样:在『异步执行』+『串行队列』的任务中,又嵌套了『当前的串行队列』,然后进行『同步执行』。
dispatch_queue_t queue = dispatch_queue_create("test.queue", DISPATCH_QUEUE_SERIAL);
dispatch_async(queue, ^{ // 异步执行 + 串行队列
dispatch_sync(queue, ^{ // 同步执行 + 当前串行队列
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
});
执行上面的代码会导致 串行队列中追加的任务 和 串行队列中原有的任务 两者之间相互等待,阻塞了『串行队列』,最终造成了串行队列所在的线程(子线程)死锁问题。
主队列造成死锁也是基于这个原因,所以,这也进一步说明了主队列其实并不特殊。
关于 『队列中嵌套队列』这种复杂情况,这里也简单做一个总结。不过这里只考虑同一个队列的嵌套情况,关于多个队列的相互嵌套情况还请自行研究,或者等我最新的文章发布。
『不同队列』+『不同任务』 组合,以及 『队列中嵌套队列』 使用的区别:
| 区别 | 『异步执行+并发队列』嵌套『同一个并发队列』 | 『同步执行+并发队列』嵌套『同一个并发队列』 | 『异步执行+串行队列』嵌套『同一个串行队列』 | 『同步执行+串行队列』嵌套『同一个串行队列』 |
| ---> | ---> | ---> | ---> | ---> |
| 同步(sync) | 没有开启新的线程,串行执行任务 | 没有开启新线程,串行执行任务 | 死锁卡住不执行 | 死锁卡住不执行 |
| 异步(async) | 有开启新线程,并发执行任务 | 有开启新线程,并发执行任务 | 有开启新线程(1 条),串行执行任务 | 有开启新线程(1 条),串行执行任务 |
好了,关于『不同队列』+『不同任务』 组合不同区别总结就到这里。
3.5 关于不同队列和不同任务的形象理解
因为前一段时间看到了有朋友留言说对 异步执行
和 并发队列
中创建线程能力有所不理解,我觉得这个问题的确很容易造成困惑,所以很值得拿来专门分析一下。
他的问题:
在 异步 + 并发 中的解释:
(异步执行具备开启新线程的能力。且并发队列可开启多个线程,同时执行多个任务)以及 同步 + 并发 中的解释:
(虽然并发队列可以开启多个线程,并且同时执行多个任务。但是因为本身不能创建新线程,只有当前线程这一个线程(同步任务不具备开启新线程的能力)这个地方看起来有点疑惑,你两个地方分别提到:异步执行开启新线程,并发队列也可以开启新线程,想请教下,你的意思是只有任务才拥有创建新线程的能力,而队列只有开启线程的能力,并不能创建线程 ?这二者是这样的关联吗?
关于这个问题,我想做一个很形象的类比,来帮助大家对 队列、任务 以及 线程 之间关系的理解。
假设现在有 5 个人要穿过一道门禁,这道门禁总共有 10 个入口,管理员可以决定同一时间打开几个入口,可以决定同一时间让一个人单独通过还是多个人一起通过。不过默认情况下,管理员只开启一个入口,且一个通道一次只能通过一个人。
- 这个故事里,人好比是 任务,管理员好比是 系统,入口则代表 线程。
* 5 个人表示有 5 个任务,10 个入口代表 10 条线程。 * **串行队列** 好比是 5 个人排成一支长队。 * **并发队列** 好比是 5 个人排成多支队伍,比如 2 队,或者 3 队。 * **同步任务** 好比是管理员只开启了一个入口(当前线程)。 * **异步任务** 好比是管理员同时开启了多个入口(当前线程 + 新开的线程)。
- 『异步执行 + 并发队列』 可以理解为:现在管理员开启了多个入口(比如 3 个入口),5 个人排成了多支队伍(比如 3 支队伍),这样这 5 个人就可以 3 个人同时一起穿过门禁了。
- 『同步执行 + 并发队列』 可以理解为:现在管理员只开启了 1 个入口,5 个人排成了多支队伍。虽然这 5 个人排成了多支队伍,但是只开了 1 个入口啊,这 5 个人虽然都想快点过去,但是 1 个入口一次只能过 1 个人,所以大家就只好一个接一个走过去了,表现的结果就是:顺次通过入口。
- 换成 GCD 里的语言就是说:
* 『异步执行 + 并发队列』就是:系统开启了多个线程(主线程+其他子线程),任务可以多个同时运行。 * 『同步执行 + 并发队列』就是:系统只默认开启了一个主线程,没有开启子线程,虽然任务处于并发队列中,但也只能一个接一个执行了。
下边我们来研究一下上边提到的六种简单组合方式的使用方法。
4. GCD 的基本使用
先来讲讲并发队列的两种执行方式。
4.1 同步执行 + 并发队列
- 在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。
/**
* 同步执行 + 并发队列
* 特点:在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。
*/
- (void)syncConcurrent {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"syncConcurrent--->begin");
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_sync(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"syncConcurrent--->end");
}
输出结果:
2019-08-08 14:32:53.542816+0800 YSC-GCD-demo[16332:4171500] currentThread---><NSThread: 0x600002326940>{number = 1, name = main}
2019-08-08 14:32:53.542964+0800 YSC-GCD-demo[16332:4171500] syncConcurrent--->begin
2019-08-08 14:32:55.544329+0800 YSC-GCD-demo[16332:4171500] 1---><NSThread: 0x600002326940>{number = 1, name = main}
2019-08-08 14:32:57.545779+0800 YSC-GCD-demo[16332:4171500] 2---><NSThread: 0x600002326940>{number = 1, name = main}
2019-08-08 14:32:59.547154+0800 YSC-GCD-demo[16332:4171500] 3---><NSThread: 0x600002326940>{number = 1, name = main}
2019-08-08 14:32:59.547365+0800 YSC-GCD-demo[16332:4171500] syncConcurrent--->end
从 同步执行 + 并发队列
中可看到:
- 所有任务都是在当前线程(主线程)中执行的,没有开启新的线程(
同步执行
不具备开启新线程的能力)。 - 所有任务都在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之间执行的(同步任务
需要等待队列的任务执行结束)。 - 任务按顺序执行的。按顺序执行的原因:虽然
并发队列
可以开启多个线程,并且同时执行多个任务。但是因为本身不能创建新线程,只有当前线程这一个线程(同步任务
不具备开启新线程的能力),所以也就不存在并发。而且当前线程只有等待当前队列中正在执行的任务执行完毕之后,才能继续接着执行下面的操作(同步任务
需要等待队列的任务执行结束)。所以任务只能一个接一个按顺序执行,不能同时被执行。
4.2 异步执行 + 并发队列
- 可以开启多个线程,任务交替(同时)执行。
/**
* 异步执行 + 并发队列
* 特点:可以开启多个线程,任务交替(同时)执行。
*/
- (void)asyncConcurrent {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"asyncConcurrent--->begin");
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"asyncConcurrent--->end");
}
输出结果:
2019-08-08 14:36:37.747966+0800 YSC-GCD-demo[17232:4187114] currentThread---><NSThread: 0x60000206d380>{number = 1, name = main}
2019-08-08 14:36:37.748150+0800 YSC-GCD-demo[17232:4187114] asyncConcurrent--->begin
2019-08-08 14:36:37.748279+0800 YSC-GCD-demo[17232:4187114] asyncConcurrent--->end
2019-08-08 14:36:39.752523+0800 YSC-GCD-demo[17232:4187204] 2---><NSThread: 0x600002010980>{number = 3, name = (null)}
2019-08-08 14:36:39.752527+0800 YSC-GCD-demo[17232:4187202] 3---><NSThread: 0x600002018480>{number = 5, name = (null)}
2019-08-08 14:36:39.752527+0800 YSC-GCD-demo[17232:4187203] 1---><NSThread: 0x600002023400>{number = 4, name = (null)}
在 异步执行 + 并发队列
中可以看出:
- 除了当前线程(主线程),系统又开启了 3 个线程,并且任务是交替/同时执行的。(
异步执行
具备开启新线程的能力。且并发队列
可开启多个线程,同时执行多个任务)。 - 所有任务是在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之后才执行的。说明当前线程没有等待,而是直接开启了新线程,在新线程中执行任务(异步执行
不做等待,可以继续执行任务)。
接下来再来讲讲串行队列的两种执行方式。
4.3 同步执行 + 串行队列
- 不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。
/**
* 同步执行 + 串行队列
* 特点:不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。
*/
- (void)syncSerial {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"syncSerial--->begin");
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_SERIAL);
dispatch_sync(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"syncSerial--->end");
}
输出结果为:
2019-08-08 14:39:31.366815+0800 YSC-GCD-demo[17285:4197645] currentThread---><NSThread: 0x600001b5e940>{number = 1, name = main}
2019-08-08 14:39:31.366952+0800 YSC-GCD-demo[17285:4197645] syncSerial--->begin
2019-08-08 14:39:33.368256+0800 YSC-GCD-demo[17285:4197645] 1---><NSThread: 0x600001b5e940>{number = 1, name = main}
2019-08-08 14:39:35.369661+0800 YSC-GCD-demo[17285:4197645] 2---><NSThread: 0x600001b5e940>{number = 1, name = main}
2019-08-08 14:39:37.370991+0800 YSC-GCD-demo[17285:4197645] 3---><NSThread: 0x600001b5e940>{number = 1, name = main}
2019-08-08 14:39:37.371192+0800 YSC-GCD-demo[17285:4197645] syncSerial--->end
在 同步执行 + 串行队列
可以看到:
- 所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(
同步执行
不具备开启新线程的能力)。 - 所有任务都在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之间执行(同步任务
需要等待队列的任务执行结束)。 - 任务是按顺序执行的(
串行队列
每次只有一个任务被执行,任务一个接一个按顺序执行)。
4.4 异步执行 + 串行队列
- 会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务
/**
* 异步执行 + 串行队列
* 特点:会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务。
*/
- (void)asyncSerial {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"asyncSerial--->begin");
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_SERIAL);
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"asyncSerial--->end");
}
输出结果为:
2019-08-08 14:40:53.944502+0800 YSC-GCD-demo[17313:4203018] currentThread---><NSThread: 0x6000015da940>{number = 1, name = main}
2019-08-08 14:40:53.944615+0800 YSC-GCD-demo[17313:4203018] asyncSerial--->begin
2019-08-08 14:40:53.944710+0800 YSC-GCD-demo[17313:4203018] asyncSerial--->end
2019-08-08 14:40:55.947709+0800 YSC-GCD-demo[17313:4203079] 1---><NSThread: 0x6000015a0840>{number = 3, name = (null)}
2019-08-08 14:40:57.952453+0800 YSC-GCD-demo[17313:4203079] 2---><NSThread: 0x6000015a0840>{number = 3, name = (null)}
2019-08-08 14:40:59.952943+0800 YSC-GCD-demo[17313:4203079] 3---><NSThread: 0x6000015a0840>{number = 3, name = (null)}
在 异步执行 + 串行队列
可以看到:
- 开启了一条新线程(
异步执行
具备开启新线程的能力,串行队列
只开启一个线程)。 - 所有任务是在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之后才开始执行的(异步执行
不会做任何等待,可以继续执行任务)。 - 任务是按顺序执行的(
串行队列
每次只有一个任务被执行,任务一个接一个按顺序执行)。
下边讲讲刚才我们提到过的:主队列。
- 主队列:GCD 默认提供的 串行队列。
- 默认情况下,平常所写代码是直接放在主队列中的。
- 所有放在主队列中的任务,都会放到主线程中执行。
- 可使用
dispatch_get_main_queue()
获得主队列。
我们再来看看主队列的两种组合方式。
4.5 同步执行 + 主队列
同步执行 + 主队列
在不同线程中调用结果也是不一样,在主线程中调用会发生死锁问题,而在其他线程中调用则不会。
4.5.1 在主线程中调用 『同步执行 + 主队列』
- 互相等待卡住不可行
/**
* 同步执行 + 主队列
* 特点(主线程调用):互等卡主不执行。
* 特点(其他线程调用):不会开启新线程,执行完一个任务,再执行下一个任务。
*/
- (void)syncMain {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"syncMain--->begin");
dispatch_queue_t queue = dispatch_get_main_queue();
dispatch_sync(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_sync(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"syncMain--->end");
}
输出结果
2019-08-08 14:43:58.062376+0800 YSC-GCD-demo[17371:4213562] currentThread---><NSThread: 0x6000026e2940>{number = 1, name = main}
2019-08-08 14:43:58.062518+0800 YSC-GCD-demo[17371:4213562] syncMain--->begin
(lldb)
在主线程中使用 同步执行 + 主队列
可以惊奇的发现:
- 追加到主线程的任务 1、任务 2、任务 3 都不再执行了,而且
syncMain--->end
也没有打印,在 XCode 9 及以上版本上还会直接报崩溃。这是为什么呢?
这是因为我们在主线程中执行 syncMain
方法,相当于把 syncMain
任务放到了主线程的队列中。而 同步执行
会等待当前队列中的任务执行完毕,才会接着执行。那么当我们把 任务 1
追加到主队列中,任务 1
就在等待主线程处理完 syncMain
任务。而syncMain
任务需要等待 任务 1
执行完毕,才能接着执行。
那么,现在的情况就是 syncMain
任务和 任务 1
都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了,而且 syncMain--->end
也没有打印。
要是如果不在主线程中调用,而在其他线程中调用会如何呢?
4.5.2 在其他线程中调用『同步执行 + 主队列』
- 不会开启新线程,执行完一个任务,再执行下一个任务
// 使用 NSThread 的 detachNewThreadSelector 方法会创建线程,并自动启动线程执行 selector 任务
[NSThread detachNewThreadSelector:@selector(syncMain) toTarget:self withObject:nil];
输出结果:
2019-08-08 14:51:38.137978+0800 YSC-GCD-demo[17482:4237818] currentThread---><NSThread: 0x600001dd6c00>{number = 3, name = (null)}
2019-08-08 14:51:38.138159+0800 YSC-GCD-demo[17482:4237818] syncMain--->begin
2019-08-08 14:51:40.149065+0800 YSC-GCD-demo[17482:4237594] 1---><NSThread: 0x600001d8d380>{number = 1, name = main}
2019-08-08 14:51:42.151104+0800 YSC-GCD-demo[17482:4237594] 2---><NSThread: 0x600001d8d380>{number = 1, name = main}
2019-08-08 14:51:44.152583+0800 YSC-GCD-demo[17482:4237594] 3---><NSThread: 0x600001d8d380>{number = 1, name = main}
2019-08-08 14:51:44.152767+0800 YSC-GCD-demo[17482:4237818] syncMain--->end
在其他线程中使用 同步执行 + 主队列
可看到:
- 所有任务都是在主线程(非当前线程)中执行的,没有开启新的线程(所有放在
主队列
中的任务,都会放到主线程中执行)。 - 所有任务都在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之间执行(同步任务
需要等待队列的任务执行结束)。 - 任务是按顺序执行的(主队列是
串行队列
,每次只有一个任务被执行,任务一个接一个按顺序执行)。
为什么现在就不会卡住了呢?
因为syncMain 任务
放到了其他线程里,而 任务 1
、任务 2
、任务3
都在追加到主队列中,这三个任务都会在主线程中执行。syncMain 任务
在其他线程中执行到追加 任务 1
到主队列中,因为主队列现在没有正在执行的任务,所以,会直接执行主队列的 任务1
,等 任务1
执行完毕,再接着执行 任务 2
、任务 3
。所以这里不会卡住线程,也就不会造成死锁问题。
4.6 异步执行 + 主队列
- 只在主线程中执行任务,执行完一个任务,再执行下一个任务。
/**
* 异步执行 + 主队列
* 特点:只在主线程中执行任务,执行完一个任务,再执行下一个任务
*/
- (void)asyncMain {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"asyncMain--->begin");
dispatch_queue_t queue = dispatch_get_main_queue();
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
NSLog(@"asyncMain--->end");
}
输出结果:
2019-08-08 14:53:27.023091+0800 YSC-GCD-demo[17521:4243690] currentThread---><NSThread: 0x6000022a1380>{number = 1, name = main}
2019-08-08 14:53:27.023247+0800 YSC-GCD-demo[17521:4243690] asyncMain--->begin
2019-08-08 14:53:27.023399+0800 YSC-GCD-demo[17521:4243690] asyncMain--->end
2019-08-08 14:53:29.035565+0800 YSC-GCD-demo[17521:4243690] 1---><NSThread: 0x6000022a1380>{number = 1, name = main}
2019-08-08 14:53:31.036565+0800 YSC-GCD-demo[17521:4243690] 2---><NSThread: 0x6000022a1380>{number = 1, name = main}
2019-08-08 14:53:33.037092+0800 YSC-GCD-demo[17521:4243690] 3---><NSThread: 0x6000022a1380>{number = 1, name = main}
在 异步执行 + 主队列
可以看到:
- 所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(虽然
异步执行
具备开启线程的能力,但因为是主队列,所以所有任务都在主线程中)。 - 所有任务是在打印的
syncConcurrent--->begin
和syncConcurrent--->end
之后才开始执行的(异步执行不会做任何等待,可以继续执行任务)。 - 任务是按顺序执行的(因为主队列是
串行队列
,每次只有一个任务被执行,任务一个接一个按顺序执行)。
弄懂了难理解、绕来绕去的『不同队列』+『不同任务』使用区别之后,我们来学习一个简单的东西:5. GCD 线程间的通信。
5. GCD 线程间的通信
在 iOS 开发过程中,我们一般在主线程里边进行 UI 刷新,例如:点击、滚动、拖拽等事件。我们通常把一些耗时的操作放在其他线程,比如说图片下载、文件上传等耗时操作。而当我们有时候在其他线程完成了耗时操作时,需要回到主线程,那么就用到了线程之间的通讯。
/**
* 线程间通信
*/
- (void)communication {
// 获取全局并发队列
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
// 获取主队列
dispatch_queue_t mainQueue = dispatch_get_main_queue();
dispatch_async(queue, ^{
// 异步追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
// 回到主线程
dispatch_async(mainQueue, ^{
// 追加在主线程中执行的任务
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
});
}
输出结果:
2019-08-08 14:56:22.973318+0800 YSC-GCD-demo[17573:4253201] 1---><NSThread: 0x600001846080>{number = 3, name = (null)}
2019-08-08 14:56:24.973902+0800 YSC-GCD-demo[17573:4253108] 2---><NSThread: 0x60000181e940>{number = 1, name = main}
- 可以看到在其他线程中先执行任务,执行完了之后回到主线程执行主线程的相应操作。
6. GCD 的其他方法
6.1 GCD 栅栏方法:dispatch_barrier_async
-
我们有时需要异步执行两组操作,而且第一组操作执行完之后,才能开始执行第二组操作。这样我们就需要一个相当于
image栅栏
一样的一个方法将两组异步执行的操作组给分割起来,当然这里的操作组里可以包含一个或多个任务。这就需要用到dispatch_barrier_async
方法在两个操作组间形成栅栏。
dispatch_barrier_async
方法会等待前边追加到并发队列中的任务全部执行完毕之后,再将指定的任务追加到该异步队列中。然后在dispatch_barrier_async
方法追加的任务执行完毕之后,异步队列才恢复为一般动作,接着追加任务到该异步队列并开始执行。具体如下图所示:
/**
* 栅栏方法 dispatch_barrier_async
*/
- (void)barrier {
dispatch_queue_t queue = dispatch_queue_create("net.mars.testQueue", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_barrier_async(queue, ^{
// 追加任务 barrier
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"barrier--->%@",[NSThread currentThread]);// 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 3
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_async(queue, ^{
// 追加任务 4
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"4--->%@",[NSThread currentThread]); // 打印当前线程
});
}
输出结果:
2019-08-08 14:59:02.540868+0800 YSC-GCD-demo[17648:4262933] 1---><NSThread: 0x600001ca4c40>{number = 3, name = (null)}
2019-08-08 14:59:02.540868+0800 YSC-GCD-demo[17648:4262932] 2---><NSThread: 0x600001c84a00>{number = 4, name = (null)}
2019-08-08 14:59:04.542346+0800 YSC-GCD-demo[17648:4262933] barrier---><NSThread: 0x600001ca4c40>{number = 3, name = (null)}
2019-08-08 14:59:06.542772+0800 YSC-GCD-demo[17648:4262932] 4---><NSThread: 0x600001c84a00>{number = 4, name = (null)}
2019-08-08 14:59:06.542773+0800 YSC-GCD-demo[17648:4262933] 3---><NSThread: 0x600001ca4c40>{number = 3, name = (null)}
在 dispatch_barrier_async
执行结果中可以看出:
- 在执行完栅栏前面的操作之后,才执行栅栏操作,最后再执行栅栏后边的操作。
6.2 GCD 延时执行方法:dispatch_after
我们经常会遇到这样的需求:在指定时间(例如 3 秒)之后执行某个任务。可以用 GCD 的dispatch_after
方法来实现。
需要注意的是:dispatch_after
方法并不是在指定时间之后才开始执行处理,而是在指定时间之后将任务追加到主队列中。严格来说,这个时间并不是绝对准确的,但想要大致延迟执行任务,dispatch_after
方法是很有效的。
/**
* 延时执行方法 dispatch_after
*/
- (void)after {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"asyncMain--->begin");
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
// 2.0 秒后异步追加任务代码到主队列,并开始执行
NSLog(@"after--->%@",[NSThread currentThread]); // 打印当前线程
});
}
输出结果:
2019-08-08 15:01:33.569710+0800 YSC-GCD-demo[17702:4272430] currentThread---><NSThread: 0x600001ead340>{number = 1, name = main}
2019-08-08 15:01:33.569838+0800 YSC-GCD-demo[17702:4272430] asyncMain--->begin
2019-08-08 15:01:35.570146+0800 YSC-GCD-demo[17702:4272430] after---><NSThread: 0x600001ead340>{number = 1, name = main}
可以看出:在打印 asyncMain--->begin
之后大约 2.0 秒的时间,打印了 after---><NSThread: 0x600001ead340>{number = 1, name = main}
6.3 GCD 一次性代码(只执行一次):dispatch_once
- 我们在创建单例、或者有整个程序运行过程中只执行一次的代码时,我们就用到了 GCD 的
dispatch_once
方法。使用dispatch_once
方法能保证某段代码在程序运行过程中只被执行 1 次,并且即使在多线程的环境下,dispatch_once
也可以保证线程安全。
/**
* 一次性代码(只执行一次)dispatch_once
*/
- (void)once {
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
// 只执行 1 次的代码(这里面默认是线程安全的)
});
}
6.4 GCD 快速迭代方法:dispatch_apply
- 通常我们会用 for 循环遍历,但是 GCD 给我们提供了快速迭代的方法
dispatch_apply
。dispatch_apply
按照指定的次数将指定的任务追加到指定的队列中,并等待全部队列执行结束。
如果是在串行队列中使用 dispatch_apply
,那么就和 for 循环一样,按顺序同步执行。但是这样就体现不出快速迭代的意义了。
我们可以利用并发队列进行异步执行。比如说遍历 0~5 这 6 个数字,for 循环的做法是每次取出一个元素,逐个遍历。dispatch_apply
可以 在多个线程中同时(异步)遍历多个数字。
还有一点,无论是在串行队列,还是并发队列中,dispatch_apply 都会等待全部任务执行完毕,这点就像是同步操作,也像是队列组中的 dispatch_group_wait
方法。
/**
* 快速迭代方法 dispatch_apply
*/
- (void)apply {
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
NSLog(@"apply--->begin");
dispatch_apply(6, queue, ^(size_t index) {
NSLog(@"%zd--->%@",index, [NSThread currentThread]);
});
NSLog(@"apply--->end");
}
输出结果:
2019-08-08 15:05:04.715266+0800 YSC-GCD-demo[17771:4285619] apply--->begin
2019-08-08 15:05:04.715492+0800 YSC-GCD-demo[17771:4285619] 0---><NSThread: 0x600003bd1380>{number = 1, name = main}
2019-08-08 15:05:04.715516+0800 YSC-GCD-demo[17771:4285722] 1---><NSThread: 0x600003b82340>{number = 3, name = (null)}
2019-08-08 15:05:04.715526+0800 YSC-GCD-demo[17771:4285720] 3---><NSThread: 0x600003ba4cc0>{number = 5, name = (null)}
2019-08-08 15:05:04.715564+0800 YSC-GCD-demo[17771:4285721] 2---><NSThread: 0x600003bb9a80>{number = 7, name = (null)}
2019-08-08 15:05:04.715555+0800 YSC-GCD-demo[17771:4285719] 4---><NSThread: 0x600003b98100>{number = 6, name = (null)}
2019-08-08 15:05:04.715578+0800 YSC-GCD-demo[17771:4285728] 5---><NSThread: 0x600003beb400>{number = 4, name = (null)}
2019-08-08 15:05:04.715677+0800 YSC-GCD-demo[17771:4285619] apply--->end
因为是在并发队列中异步执行任务,所以各个任务的执行时间长短不定,最后结束顺序也不定。但是 apply--->end
一定在最后执行。这是因为 dispatch_apply
方法会等待全部任务执行完毕。
6.5 GCD 队列组:dispatch_group
有时候我们会有这样的需求:分别异步执行2个耗时任务,然后当2个耗时任务都执行完毕后再回到主线程执行任务。这时候我们可以用到 GCD 的队列组。
- 调用队列组的
dispatch_group_async
先把任务放到队列中,然后将队列放入队列组中。或者使用队列组的dispatch_group_enter
、dispatch_group_leave
组合来实现dispatch_group_async
。 - 调用队列组的
dispatch_group_notify
回到指定线程执行任务。或者使用dispatch_group_wait
回到当前线程继续向下执行(会阻塞当前线程)。
6.5.1 dispatch_group_notify
- 监听 group 中任务的完成状态,当所有的任务都执行完成后,追加任务到 group 中,并执行任务。
/**
* 队列组 dispatch_group_notify
*/
- (void)groupNotify {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"group--->begin");
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
// 等前面的异步任务 1、任务 2 都执行完毕后,回到主线程执行下边任务
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"group--->end");
});
}
输出结果:
2019-08-08 15:07:21.601734+0800 YSC-GCD-demo[17813:4293874] currentThread---><NSThread: 0x600003aad380>{number = 1, name = main}
2019-08-08 15:07:21.601871+0800 YSC-GCD-demo[17813:4293874] group--->begin
2019-08-08 15:07:23.604854+0800 YSC-GCD-demo[17813:4294048] 2---><NSThread: 0x600003add100>{number = 4, name = (null)}
2019-08-08 15:07:23.604852+0800 YSC-GCD-demo[17813:4294053] 1---><NSThread: 0x600003ace4c0>{number = 3, name = (null)}
2019-08-08 15:07:25.606067+0800 YSC-GCD-demo[17813:4293874] 3---><NSThread: 0x600003aad380>{number = 1, name = main}
2019-08-08 15:07:25.606255+0800 YSC-GCD-demo[17813:4293874] group--->end
从 dispatch_group_notify
相关代码运行输出结果可以看出:
当所有任务都执行完成之后,才执行 dispatch_group_notify
相关 block 中的任务。
6.5.2 dispatch_group_wait
- 暂停当前线程(阻塞当前线程),等待指定的 group 中的任务执行完成后,才会往下继续执行。
/**
* 队列组 dispatch_group_wait
*/
- (void)groupWait {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"group--->begin");
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
});
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
});
// 等待上面的任务全部完成后,会往下继续执行(会阻塞当前线程)
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
NSLog(@"group--->end");
}
输出结果:
2019-08-08 15:09:12.441729+0800 YSC-GCD-demo[17844:4299926] currentThread---><NSThread: 0x6000013e2940>{number = 1, name = main}
2019-08-08 15:09:12.441870+0800 YSC-GCD-demo[17844:4299926] group--->begin
2019-08-08 15:09:14.445790+0800 YSC-GCD-demo[17844:4300046] 2---><NSThread: 0x600001389780>{number = 4, name = (null)}
2019-08-08 15:09:14.445760+0800 YSC-GCD-demo[17844:4300043] 1---><NSThread: 0x600001381880>{number = 3, name = (null)}
2019-08-08 15:09:14.446039+0800 YSC-GCD-demo[17844:4299926] group--->end
从 dispatch_group_wait
相关代码运行输出结果可以看出:
当所有任务执行完成之后,才执行 dispatch_group_wait
之后的操作。但是,使用dispatch_group_wait
会阻塞当前线程。
6.5.3 dispatch_group_enter、dispatch_group_leave
-
dispatch_group_enter
标志着一个任务追加到 group,执行一次,相当于 group 中未执行完毕任务数 +1 -
dispatch_group_leave
标志着一个任务离开了 group,执行一次,相当于 group 中未执行完毕任务数 -1。 - 当 group 中未执行完毕任务数为0的时候,才会使
dispatch_group_wait
解除阻塞,以及执行追加到dispatch_group_notify
中的任务。
/**
* 队列组 dispatch_group_enter、dispatch_group_leave
*/
- (void)groupEnterAndLeave {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"group--->begin");
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_group_enter(group);
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(queue, ^{
// 追加任务 2
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"2--->%@",[NSThread currentThread]); // 打印当前线程
dispatch_group_leave(group);
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
// 等前面的异步操作都执行完毕后,回到主线程.
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"3--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"group--->end");
});
}
输出结果:
2019-08-08 15:13:17.983283+0800 YSC-GCD-demo[17924:4314716] currentThread---><NSThread: 0x600001ee5380>{number = 1, name = main}
2019-08-08 15:13:17.983429+0800 YSC-GCD-demo[17924:4314716] group--->begin
2019-08-08 15:13:19.988898+0800 YSC-GCD-demo[17924:4314816] 2---><NSThread: 0x600001e9ca00>{number = 3, name = (null)}
2019-08-08 15:13:19.988888+0800 YSC-GCD-demo[17924:4314808] 1---><NSThread: 0x600001e94100>{number = 4, name = (null)}
2019-08-08 15:13:21.990450+0800 YSC-GCD-demo[17924:4314716] 3---><NSThread: 0x600001ee5380>{number = 1, name = main}
2019-08-08 15:13:21.990711+0800 YSC-GCD-demo[17924:4314716] group--->end
从 dispatch_group_enter、dispatch_group_leave
相关代码运行结果中可以看出:当所有任务执行完成之后,才执行 dispatch_group_notify
中的任务。这里的dispatch_group_enter
、dispatch_group_leave
组合,其实等同于dispatch_group_async
。
6.6 GCD 信号量:dispatch_semaphore
GCD 中的信号量是指 Dispatch Semaphore,是持有计数的信号。类似于过高速路收费站的栏杆。可以通过时,打开栏杆,不可以通过时,关闭栏杆。在 Dispatch Semaphore 中,使用计数来完成这个功能,计数小于 0 时需要等待,不可通过。计数为 0 或大于 0 时,不用等待,可通过。计数大于 0 且计数减 1 时不用等待,可通过。
Dispatch Semaphore 提供了三个方法:
-
dispatch_semaphore_create
:创建一个 Semaphore 并初始化信号的总量 -
dispatch_semaphore_signal
:发送一个信号,让信号总量加 1 -
dispatch_semaphore_wait
:可以使总信号量减 1,信号总量小于 0 时就会一直等待(阻塞所在线程),否则就可以正常执行。
注意:信号量的使用前提是:想清楚你需要处理哪个线程等待(阻塞),又要哪个线程继续执行,然后使用信号量。
Dispatch Semaphore 在实际开发中主要用于:
- 保持线程同步,将异步执行任务转换为同步执行任务
- 保证线程安全,为线程加锁
6.6.1 Dispatch Semaphore 线程同步
我们在开发中,会遇到这样的需求:异步执行耗时任务,并使用异步执行的结果进行一些额外的操作。换句话说,相当于,将将异步执行任务转换为同步执行任务。比如说:AFNetworking 中 AFURLSessionManager.m 里面的 tasksForKeyPath:
方法。通过引入信号量的方式,等待异步执行任务结果,获取到 tasks,然后再返回该 tasks。
- (NSArray *)tasksForKeyPath:(NSString *)keyPath {
__block NSArray *tasks = nil;
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
[self.session getTasksWithCompletionHandler:^(NSArray *dataTasks, NSArray *uploadTasks, NSArray *downloadTasks) {
if ([keyPath isEqualToString:NSStringFromSelector(@selector(dataTasks))]) {
tasks = dataTasks;
} else if ([keyPath isEqualToString:NSStringFromSelector(@selector(uploadTasks))]) {
tasks = uploadTasks;
} else if ([keyPath isEqualToString:NSStringFromSelector(@selector(downloadTasks))]) {
tasks = downloadTasks;
} else if ([keyPath isEqualToString:NSStringFromSelector(@selector(tasks))]) {
tasks = [@[dataTasks, uploadTasks, downloadTasks] valueForKeyPath:@"@unionOfArrays.self"];
}
dispatch_semaphore_signal(semaphore);
}];
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
return tasks;
}
下面,我们来利用 Dispatch Semaphore 实现线程同步,将异步执行任务转换为同步执行任务。
/**
* semaphore 线程同步
*/
- (void)semaphoreSync {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"semaphore--->begin");
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
__block int number = 0;
dispatch_async(queue, ^{
// 追加任务 1
[NSThread sleepForTimeInterval:2]; // 模拟耗时操作
NSLog(@"1--->%@",[NSThread currentThread]); // 打印当前线程
number = 100;
dispatch_semaphore_signal(semaphore);
});
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
NSLog(@"semaphore--->end,number = %zd",number);
}
输出结果:
2019-08-08 15:16:56.781543+0800 YSC-GCD-demo[17988:4325744] currentThread---><NSThread: 0x60000298d380>{number = 1, name = main}
2019-08-08 15:16:56.781698+0800 YSC-GCD-demo[17988:4325744] semaphore--->begin
2019-08-08 15:16:58.785232+0800 YSC-GCD-demo[17988:4325867] 1---><NSThread: 0x6000029eba80>{number = 3, name = (null)}
2019-08-08 15:16:58.785432+0800 YSC-GCD-demo[17988:4325744] semaphore--->end,number = 100
从 Dispatch Semaphore 实现线程同步的代码可以看到:
-
semaphore--->end
是在执行完number = 100;
之后才打印的。而且输出结果 number 为 100。这是因为异步执行
不会做任何等待,可以继续执行任务。
执行顺如下:- semaphore 初始创建时计数为 0。
-
异步执行
将任务 1
追加到队列之后,不做等待,接着执行dispatch_semaphore_wait
方法,semaphore 减 1,此时semaphore == -1
,当前线程进入等待状态。 - 然后,异步任务 1 开始执行。任务 1 执行到
dispatch_semaphore_signal
之后,总信号量加 1,此时semaphore == 0
,正在被阻塞的线程(主线程)恢复继续执行。 - 最后打印
semaphore--->end,number = 100
。
这样就实现了线程同步,将异步执行任务转换为同步执行任务。
6.6.2 Dispatch Semaphore 线程安全和线程同步(为线程加锁)
线程安全:如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。
线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作。
举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)。
下面,我们模拟火车票售卖的方式,实现 NSThread 线程安全和解决线程同步问题。
场景:总共有 50 张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止。
6.6.2.1 非线程安全(不使用 semaphore)
先来看看不考虑线程安全的代码:
/**
* 非线程安全:不使用 semaphore
* 初始化火车票数量、卖票窗口(非线程安全)、并开始卖票
*/
- (void)initTicketStatusNotSave {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"semaphore--->begin");
self.ticketSurplusCount = 50;
// queue1 代表北京火车票售卖窗口
dispatch_queue_t queue1 = dispatch_queue_create("net.mars.testQueue1", DISPATCH_QUEUE_SERIAL);
// queue2 代表上海火车票售卖窗口
dispatch_queue_t queue2 = dispatch_queue_create("net.mars.testQueue2", DISPATCH_QUEUE_SERIAL);
__weak typeof(self) weakSelf = self;
dispatch_async(queue1, ^{
[weakSelf saleTicketNotSafe];
});
dispatch_async(queue2, ^{
[weakSelf saleTicketNotSafe];
});
}
/**
* 售卖火车票(非线程安全)
*/
- (void)saleTicketNotSafe {
while (1) {
if (self.ticketSurplusCount > 0) { // 如果还有票,继续售卖
self.ticketSurplusCount--;
NSLog(@"%@", [NSString stringWithFormat:@"剩余火车票:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
[NSThread sleepForTimeInterval:0.2];
} else { // 如果已卖完,关闭售票窗口
NSLog(@"所有火车票均已售完");
break;
}
}
}
输出结果(部分):
2019-08-08 15:21:39.772655+0800 YSC-GCD-demo[18071:4340555] currentThread---><NSThread: 0x6000015a2f40>{number = 1, name = main}
2019-08-08 15:21:39.772790+0800 YSC-GCD-demo[18071:4340555] semaphore--->begin
2019-08-08 15:21:39.773101+0800 YSC-GCD-demo[18071:4340604] 剩余火车票:48 窗口:<NSThread: 0x6000015cc600>{number = 4, name = (null)}
2019-08-08 15:21:39.773115+0800 YSC-GCD-demo[18071:4340605] 剩余火车票:49 窗口:<NSThread: 0x6000015f8600>{number = 3, name = (null)}
2019-08-08 15:21:39.975041+0800 YSC-GCD-demo[18071:4340605] 剩余火车票:47 窗口:<NSThread: 0x6000015f8600>{number = 3, name = (null)}
2019-08-08 15:21:39.975037+0800 YSC-GCD-demo[18071:4340604] 剩余火车票:47 窗口:<NSThread: 0x6000015cc600>{number = 4, name = (null)}
2019-08-08 15:21:40.176567+0800 YSC-GCD-demo[18071:4340604] 剩余火车票:46 窗口:<NSThread: 0x6000015cc600>{number = 4, name = (null)}
...
可以看到在不考虑线程安全,不使用 semaphore 的情况下,得到票数是错乱的,这样显然不符合我们的需求,所以我们需要考虑线程安全问题。
6.6.2.2 线程安全(使用 semaphore 加锁)
考虑线程安全的代码:
/**
* 线程安全:使用 semaphore 加锁
* 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
*/
- (void)initTicketStatusSave {
NSLog(@"currentThread--->%@",[NSThread currentThread]); // 打印当前线程
NSLog(@"semaphore--->begin");
semaphoreLock = dispatch_semaphore_create(1);
self.ticketSurplusCount = 50;
// queue1 代表北京火车票售卖窗口
dispatch_queue_t queue1 = dispatch_queue_create("net.mars.testQueue1", DISPATCH_QUEUE_SERIAL);
// queue2 代表上海火车票售卖窗口
dispatch_queue_t queue2 = dispatch_queue_create("net.mars.testQueue2", DISPATCH_QUEUE_SERIAL);
__weak typeof(self) weakSelf = self;
dispatch_async(queue1, ^{
[weakSelf saleTicketSafe];
});
dispatch_async(queue2, ^{
[weakSelf saleTicketSafe];
});
}
/**
* 售卖火车票(线程安全)
*/
- (void)saleTicketSafe {
while (1) {
// 相当于加锁
dispatch_semaphore_wait(semaphoreLock, DISPATCH_TIME_FOREVER);
if (self.ticketSurplusCount > 0) { // 如果还有票,继续售卖
self.ticketSurplusCount--;
NSLog(@"%@", [NSString stringWithFormat:@"剩余火车票:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
[NSThread sleepForTimeInterval:0.2];
} else { // 如果已卖完,关闭售票窗口
NSLog(@"所有火车票均已售完");
// 相当于解锁
dispatch_semaphore_signal(semaphoreLock);
break;
}
// 相当于解锁
dispatch_semaphore_signal(semaphoreLock);
}
}
输出结果为:
2019-08-08 15:23:58.819891+0800 YSC-GCD-demo[18116:4348091] currentThread---><NSThread: 0x600000681380>{number = 1, name = main}
2019-08-08 15:23:58.820041+0800 YSC-GCD-demo[18116:4348091] semaphore--->begin
2019-08-08 15:23:58.820305+0800 YSC-GCD-demo[18116:4348159] 剩余火车票:49 窗口:<NSThread: 0x6000006ede80>{number = 3, name = (null)}
2019-08-08 15:23:59.022165+0800 YSC-GCD-demo[18116:4348157] 剩余火车票:48 窗口:<NSThread: 0x6000006e4b40>{number = 4, name = (null)}
2019-08-08 15:23:59.225299+0800 YSC-GCD-demo[18116:4348159] 剩余火车票:47 窗口:<NSThread: 0x6000006ede80>{number = 3, name = (null)}
...
2019-08-08 15:24:08.355977+0800 YSC-GCD-demo[18116:4348157] 剩余火车票:2 窗口:<NSThread: 0x6000006e4b40>{number = 4, name = (null)}
2019-08-08 15:24:08.559201+0800 YSC-GCD-demo[18116:4348159] 剩余火车票:1 窗口:<NSThread: 0x6000006ede80>{number = 3, name = (null)}
2019-08-08 15:24:08.759630+0800 YSC-GCD-demo[18116:4348157] 剩余火车票:0 窗口:<NSThread: 0x6000006e4b40>{number = 4, name = (null)}
2019-08-08 15:24:08.965100+0800 YSC-GCD-demo[18116:4348159] 所有火车票均已售完
2019-08-08 15:24:08.965440+0800 YSC-GCD-demo[18116:4348157] 所有火车票均已售完
可以看出,在考虑了线程安全的情况下,使用 dispatch_semaphore
机制之后,得到的票数是正确的,没有出现混乱的情况。我们也就解决了多个线程同步的问题。
网友评论