美文网首页
Tensorflow神经网络之多层感知机

Tensorflow神经网络之多层感知机

作者: AI异构 | 来源:发表于2019-02-25 13:48 被阅读0次

    多层感知机简介

    多层感知机模型
    image

    这里定义含有两个隐含层的模型,隐含层输出均为256个节点,输入784(MNIST数据集图片大小28*28),输出10。

    激活函数

    比较常用的是 ReLU:relu(x)=max(x,0),本例中没有加激活函数。

    softmax(同前面的logistic回归)
    损失函数:交叉熵

    Tensorflow实现多层感知机

    from __future__ import print_function
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    

    导入数据集

    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("./data/", one_hot=False)
    
    Extracting ./data/train-images-idx3-ubyte.gz
    Extracting ./data/train-labels-idx1-ubyte.gz
    Extracting ./data/t10k-images-idx3-ubyte.gz
    Extracting ./data/t10k-labels-idx1-ubyte.gz
    

    设置参数

    # Parameters
    learning_rate = 0.1
    num_steps = 1000
    batch_size = 128
    display_step = 100
    
    # Network Parameters
    n_hidden_1 = 256 # 1st layer number of neurons
    n_hidden_2 = 256 # 2nd layer number of neurons
    num_input = 784 # MNIST data input (img shape: 28*28)
    num_classes = 10 # MNIST total classes (0-9 digits)
    

    定义多层感知机模型

    # Define the neural network
    def neural_net(x_dict):
        # TF Estimator input is a dict, in case of multiple inputs
        x = x_dict['images']
        # Hidden fully connected layer with 256 neurons
        layer_1 = tf.layers.dense(x, n_hidden_1)
        # Hidden fully connected layer with 256 neurons
        layer_2 = tf.layers.dense(layer_1, n_hidden_2)
        # Output fully connected layer with a neuron for each class
        out_layer = tf.layers.dense(layer_2, num_classes)
        return out_layer
    

    补充:dense [^2]

    dense(
       inputs,
       units,
       activation=None,
       use_bias=True,
       kernel_initializer=None,
       bias_initializer=tf.zeros_initializer(),
       kernel_regularizer=None,
       bias_regularizer=None,
       activity_regularizer=None,
       kernel_constraint=None,
       bias_constraint=None,
       trainable=True,
       name=None,
       reuse=None
    )
    

    参数说明如下:

    • inputs:必需,即需要进行操作的输入数据。
    • units:必须,即神经元的数量。
    • activation:可选,默认为 None,如果为 None 则是线性激>活。
    • use_bias:可选,默认为 True,是否使用偏置。
    • kernel_initializer:可选,默认为 None,即权重的初始化>方法,如果为 None,则使用默认的 Xavier 初始化方法。
    • bias_initializer:可选,默认为零值初始化,即偏置的初始>化方法。
    • kernel_regularizer:可选,默认为 None,施加在权重上的>正则项。
    • bias_regularizer:可选,默认为 None,施加在偏置上的正>则项。
    • activity_regularizer:可选,默认为 None,施加在输出上>的正则项。
    • kernel_constraint,可选,默认为 None,施加在权重上的>约束项。
    • bias_constraint,可选,默认为 None,施加在偏置上的约束>项。
    • trainable:可选,默认为 True,布尔类型,如果为 True,>则将变量添加到 GraphKeys.TRAINABLE_VARIABLES 中。
    • name:可选,默认为 None,卷积层的名称。
    • reuse:可选,默认为 None,布尔类型,如果为 True,那么>如果 name 相同时,会重复利用。
    • 返回值: 全连接网络处理后的 Tensor。

    上面的代码中,第三个参数为空,所以这里采用线性激活

    定义模型函数

    # Define the model function (following TF Estimator Template)
    def model_fn(features, labels, mode):
    
        # Build the neural network
        logits = neural_net(features)
    
        # Predictions
        pred_classes = tf.argmax(logits, axis=1)
        pred_probas = tf.nn.softmax(logits)
    
        # If prediction mode, early return
        if mode == tf.estimator.ModeKeys.PREDICT:
            return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)
    
        # Define loss and optimizer
        loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=tf.cast(labels, dtype=tf.int32)))
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
        train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())
    
        # Evaluate the accuracy of the model
        acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
    
        # TF Estimators requires to return a EstimatorSpec, that specify
        # the different ops for training, evaluating, ...
        estim_specs = tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=pred_classes,
          loss=loss_op,
          train_op=train_op,
          eval_metric_ops={'accuracy': acc_op})
    
        return estim_specs
    

    构建评估器

    # Build the Estimator
    model = tf.estimator.Estimator(model_fn)
    
    INFO:tensorflow:Using default config.
    WARNING:tensorflow:Using temporary folder as model directory: C:\Users\xywang\AppData\Local\Temp\tmp995gddib
    INFO:tensorflow:Using config: {'_model_dir': 'C:\\Users\\xywang\\AppData\\Local\\Temp\\tmp995gddib', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': None, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x0000024BBEE7A1D0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
    

    补充:tf.estimator
    tf.estimator就是已经预定义好的模型,自带train,evaluate,predict。
    其编程范式为:

    • 定义算法模型,比如多层感知机,CNN;
    • 定义模型函数(model_fn),包括构建graph,定义损失函数、优化器,估计准确率等,返回结果分训练和测试两种情况;
    • 构建评估器;
    model = tf.estimator.Estimator(model_fn)
    
    • 用 tf.estimator.inputs.numpy_input_fn 把 input_fn 传入 model,就可调用 model.train, model.evaluate, model.predict 了。
    input_fn = tf.estimator.inputs.numpy_input_fn()
    model.train(input_fn)
    model.evaluate(input_fn)
    model.predict(input_fn)
    

    Estimator 是一种更高层次的封装,它把一些基本算法的算法>模型和模型函数预定义好,你只需要传入参数即可。

    input_fn [^1]

    一般来讲,input_fn方法做两件事:

    1.数据预处理,如洗脏数据,归整数据等。没有就空着。

    2.返回feature_cols, labels。

    • feature_cols:一个dict,key为feature名,value>为feature值。
    • lables: 对应的分类标签。

    可以将多种对象转换为tensorflow对象,常见的为将Numpy>转tensorflow对象。比如:

    import tensorflow as tf
    import numpy as np
    #numpy input_fn.
    x_data =[{"feature1": 2, "features2":6},
             {"feature1": 1, "features2":5},
             {"feature1": 4, "features2":8}]
    y_data = [2,3,4]
    my_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": np.array(x_data)},
        y=np.array(y_data),
        shuffle = True)
    #得到的是一个名为my_input_fn的function对象。
    

    训练模型

    # Define the input function for training
    input_fn = tf.estimator.inputs.numpy_input_fn(
        x={'images': mnist.train.images}, y=mnist.train.labels,
        batch_size=batch_size, num_epochs=None, shuffle=True)
    
    #Train the Model
    model.train(input_fn, steps=num_steps)
    
    INFO:tensorflow:Calling model_fn.
    INFO:tensorflow:Done calling model_fn.
    INFO:tensorflow:Create CheckpointSaverHook.
    INFO:tensorflow:Graph was finalized.
    INFO:tensorflow:Running local_init_op.
    INFO:tensorflow:Done running local_init_op.
    INFO:tensorflow:Saving checkpoints for 1 into C:\Users\xywang\AppData\Local\Temp\tmp995gddib\model.ckpt.
    INFO:tensorflow:loss = 2.4631722, step = 1
    INFO:tensorflow:global_step/sec: 248.501
    INFO:tensorflow:loss = 0.42414927, step = 101 (0.388 sec)
    INFO:tensorflow:global_step/sec: 301.862
    INFO:tensorflow:loss = 0.48539022, step = 201 (0.331 sec)
    INFO:tensorflow:global_step/sec: 310.3
    INFO:tensorflow:loss = 0.2779913, step = 301 (0.323 sec)
    INFO:tensorflow:global_step/sec: 303.697
    INFO:tensorflow:loss = 0.20052063, step = 401 (0.329 sec)
    INFO:tensorflow:global_step/sec: 322.311
    INFO:tensorflow:loss = 0.5092098, step = 501 (0.309 sec)
    INFO:tensorflow:global_step/sec: 337.555
    INFO:tensorflow:loss = 0.28386787, step = 601 (0.297 sec)
    INFO:tensorflow:global_step/sec: 322.309
    INFO:tensorflow:loss = 0.36957514, step = 701 (0.309 sec)
    INFO:tensorflow:global_step/sec: 334.17
    INFO:tensorflow:loss = 0.28504127, step = 801 (0.300 sec)
    INFO:tensorflow:global_step/sec: 319.222
    INFO:tensorflow:loss = 0.37339848, step = 901 (0.312 sec)
    INFO:tensorflow:Saving checkpoints for 1000 into C:\Users\xywang\AppData\Local\Temp\tmp995gddib\model.ckpt.
    INFO:tensorflow:Loss for final step: 0.2043538.
    
    tensorflow.python.estimator.estimator.Estimator at 0x24bbee72160
    

    模型评估

    # Evaluate the Model
    # Define the input function for evaluating
    input_fn = tf.estimator.inputs.numpy_input_fn(
        x={'images': mnist.test.images}, y=mnist.test.labels,
        batch_size=batch_size, shuffle=False)
    # Use the Estimator 'evaluate' method
    model.evaluate(input_fn)
    
    INFO:tensorflow:Calling model_fn.
    INFO:tensorflow:Done calling model_fn.
    INFO:tensorflow:Starting evaluation at 2018-04-11-08:04:38
    INFO:tensorflow:Graph was finalized.
    INFO:tensorflow:Restoring parameters from C:\Users\xywang\AppData\Local\Temp\tmp995gddib\model.ckpt-1000
    INFO:tensorflow:Running local_init_op.
    INFO:tensorflow:Done running local_init_op.
    INFO:tensorflow:Finished evaluation at 2018-04-11-08:04:38
    INFO:tensorflow:Saving dict for global step 1000: accuracy = 0.9149, global_step = 1000, loss = 0.29386005
    
    {'accuracy': 0.9149, 'global_step': 1000, 'loss': 0.29386005}
    

    测试

    # Predict single images
    n_images = 1
    # Get images from test set
    test_images = mnist.test.images[:n_images]
    # Prepare the input data
    input_fn = tf.estimator.inputs.numpy_input_fn(
        x={'images': test_images}, shuffle=False)
    # Use the model to predict the images class
    preds = list(model.predict(input_fn))
    
    # Display
    for i in range(n_images):
        plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray')
        plt.show()
        print("Model prediction:", preds[i])
    
    INFO:tensorflow:Calling model_fn.
    INFO:tensorflow:Done calling model_fn.
    INFO:tensorflow:Graph was finalized.
    INFO:tensorflow:Restoring parameters from C:\Users\xywang\AppData\Local\Temp\tmp995gddib\model.ckpt-1000
    INFO:tensorflow:Running local_init_op.
    INFO:tensorflow:Done running local_init_op.
    
    image
    Model prediction: 7
    

    参考

    [1] 在tf.estimator中构建inpu_fn解读

    [2] TensorFlow layers模块用法

    相关文章

      网友评论

          本文标题:Tensorflow神经网络之多层感知机

          本文链接:https://www.haomeiwen.com/subject/wwzwyqtx.html