转载请注明:陈熹 chenx6542@foxmail.com (简书号:半为花间酒)
若公众号内转载请联系公众号:早起Python
题源:
早起python 《Pandas进阶修炼120题》数据:
https://pan.baidu.com/s/1DBWTFKrAeX3s9Nhmb7YvnA
提取码:wr6e数据分析120题系列:
为什么出这个专题:
R语言和pandas都是数据处理的重要工具
而二者的高下争论时有存在
我相信对于数据而言没有绝对的孰优孰劣
需要做的应该是在必要时权衡最合适的办法感谢 公众号
早起python
提供数据分析120题
这些题目是一个契机
帮助我比较了两种语言处理不同问题的共性
当然也发现了各自的灵活和缺陷它们覆盖多数数据分析初期可能遇到的问题
无论是对R语言还是对python技能的提升
相信都有很大帮助(陈熹 2020年4月)
- python解法
import pandas as pd
import numpy as np
print(np.__version__)
# 1.16.5
print(pd.__version__)
# 0.25.1
- R解法
R中没有pandas和numpy
以其他包为例,查询包版本的命令如下
packageVersion("tidyverse")
# [1] ‘1.3.0’
packageVersion("dplyr")
# [1] ‘0.8.99.9002’
- python解法
tem = np.random.randint(1,100,20)
df1 = pd.DataFrame(tem)
- R解法
df1 <- sapply(20,function(n) {
replicate(n,sample(1:100,1))
}) %>%
as.data.frame(.) %>%
dplyr::rename(`0` = V1)
pandas / R
- python解法
tem = np.arange(0,100,5)
df2 = pd.DataFrame(tem)
- R解法
df2 <- as.data.frame(seq(0,99,5)) %>%
dplyr::rename(`0` = "seq(0, 99, 5)")
pandas / R
- python解法
tem = np.random.normal(0, 1, 20)
df3 = pd.DataFrame(tem)
- R解法
df3 <- as.data.frame(rnorm(20,0,1)) %>%
dplyr::rename(`0` = "rnorm(20, 0, 1)")
pandas / R
- python解法
df = pd.concat([df1,df2,df3],axis=0,ignore_index=True)
- R解法
df <- rbind(df1,df2,df3)
pandas / R
- python解法
df = pd.concat([df1,df2,df3],axis=1,ignore_index=True)
- R解法
df <- cbind(df1,df2,df3)
names(df) <- c(0,1,2)
pandas / R
- python解法
np.percentile(df, q=[0, 25, 50, 75, 100])
- R解法
summary(unlist(df))
因为df1和df3都是随机的,所以结果不同
pandas / R- python解法
df.columns = ['col1','col2','col3']
- R解法
df <- df %>%
dplyr::rename(col1 = 1,
col2 = 2,
col3 = 3)
# 或者用类似pandas的方法
names(df) <- c('col1','col2','col3')
pandas / R
- python解法
df['col1'][~df['col1'].isin(df['col2'])]
- R解法
df[!(df$col1 %in% df$col2),1]
pandas / R
pandas / R
- python解法
temp = df['col1'].append(df['col2'])
temp.value_counts()[:3]
- R解法
count(unlist(c(df$col1,df$col2))) %>%
arrange(desc(freq)) %>%
filter(row_number() <= 3)
因为col1是随机产生的,所以结果不同
pandas / R- python解法
np.argwhere(df['col1'] % 5==0)
- R解法
which(df['col1'] %% 5==0)
pandas / R
- python解法
df['col1'].diff().tolist()
- R解法
df %>%
summarise(col1 - lag(col1)) %>%
na.omit(.) # 不去NA也可以,pandas没有去除
pandas / R
- python解法
df.iloc[:, ::-1]
- R解法
df %>%
select(col3,col2,everything())
pandas / R
- python解法
df['col1'].take([1,10,15])
# 等价于
df.iloc[[1,10,15],0]
- R解法
python中的数字位置是从0开始的,R是从1开始
故R中取同个位置需要+1
df[c(1,10,15) + 1,1]
pandas / R
- python解法
res = np.diff(np.sign(np.diff(df['col1'])))
np.where(res== -2)[0] + 1
# array([ 2, 4, 7, 9, 12, 15], dtype=int64)
- R解法
res1 <- which((df$col1 - lag(df$col1) > 0))
res2 <- which((df$col1 - lead(df$col1) > 0))
intersect(res1,res2)
# [1] 3 5 7 12 14 17 19
# 另一种方法,类似pandas的用符号判断
res <- sign(df$col1 - lag(df$col1))
which(res - lag(res) == -2) - 1
# # [1] 3 5 7 12 14 17 19
- python解法
df[['col1','col2','col3']].mean(axis=1)
- R解法
rowMeans(df)
pandas / R
- python解法
np.convolve(df['col2'], np.ones(3)/3, mode='valid')
- R解法
library(RcppRoll)
df %>%
summarise(avg_3 = roll_mean(col2, n=3))
pandas / R
- python解法
df.sort_values("col3",inplace=True)
- R解法
df <- df %>%
arrange(col3)
pandas / R
- python解法
df.col1[df['col1'] > 50] = '高'
- R解法
df[df$col1 > 50,1] <- '高'
pandas / R
Euclidean distance 欧几里得(欧氏)距离: 两变量差值平方和的平方根
- python解法
np.linalg.norm(df['col1']-df['col2'])
# 194.29873905921264
- R解法
# 可以利用概念计算
res <- (df$col1 - df$col2) ^ 2
sqrt(sum(res))
# [1] 197.0102
# 也可以利用dist函数,但需要形成两个不同的观测
dist(rbind(df$col1,df$col2))
# 1
# 2 197.0102
- python解法
df1 = pd.read_csv(r'C:\Users\chenx\Documents\Data Analysis\数据1.csv',encoding='gbk', usecols=['positionName', 'salary'],nrows = 10)
- R解法
一步读取文件的指定列用readr包或者原生函数都没办法
如果文件特别大又不想全部再选指定列可以用如下办法
基本思想先读取较少的数据获取列名
给目标列以外的列打上NULL导致第二次读取文件时NULL列丢失即可
res <- read.csv('数据1.csv',encoding = 'GBK',nrows = 3)
classes <- sapply(res, class)
classes[-match(c('positionName','salary'),names(classes))] <-
rep('NULL', length(classes) - 2)
df <- read.csv('数据1.csv',encoding = 'GBK',nrows = 10,
colClasses = classes)
pandas / R
- python解法
df2 = pd.read_csv(r'C:\Users\chenx\Documents\Data Analysis\数据2.csv',
converters={'薪资水平': lambda x: '高' if float(x) > 10000 else '低'} )
- R解法
读取文件时用函数改数据确实不会
留个坑以后有机会填上
下面采用的策略是先读再修改
library(readr)
df2 <- read_csv('数据2.csv') %>%
mutate('学历要求',
'薪资水平' = ifelse(
薪资水平 > 10000,'高','低'))
pandas / R
- python解法
df2.iloc[::20, :][['薪资水平']]
- R解法
df2[seq(1,dim(df2)[1],20),]
pandas / R
- python解法
示例即创建含10个0-1随机数的数据框
df = pd.DataFrame(np.random.random(10)**10, columns=['data'])
df.round(3)
- R解法
df <- tibble(data = runif(10)^10)
round(df,3)
pandas / R
- python解法
df.style.format({'data': '{0:.2%}'.format})
- R解法
tibble(data = str_glue('{round(df$data * 100,2)}%'))
pandas / R
- python解法
df['data'].argsort()[len(df)-3]
- R解法
df %>%
mutate(nrow = rownames(.)) %>%
arrange(desc(data)) %>%
filter(row_number() == 3) %>%
select(nrow)
- python解法
df.iloc[::-1, :]
- R解法
R顺序确实发生了逆转但行号不变
df %>%
arrange(desc(rownames(.)))
pandas / R
- python解法
df1= pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df2= pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(df1, df2, on=['key1', 'key2'])
- R解法
df1 <- data.frame(
"key1" = c("K0","K0","K1","K2"),
"key2" = c("K0","K1","K0","K1"),
"A" = paste0('A',0:3),
"B" = paste0('B',0:3)
)
df2 <- data.frame(
"key1" = c("K0","K1","K1","K2"),
"key2" = paste0('K',rep(0,4)),
"C" = paste0('C',0:3),
"D" = paste0('D',0:3)
)
full_join(df1,df2,by = c('key1','key2')) %>%
na.omit(.)
pandas / R
- python解法
pd.merge(df1, df2, how='left', on=['key1', 'key2'])
- R解法
left_join(df1,df2,by = c('key1','key2'))
pandas / R
- python解法
df = pd.read_csv(r'C:\Users\chenx\Documents\Data Analysis\数据1.csv',encoding='gbk')
pd.set_option("display.max.columns", None)
- R解法
df <- read_csv('数据1.csv', locale = locale(encoding = "GBK")) %>%
print(width = Inf)
- python解法
np.where(df.secondType == df.thirdType)
- R解法
df %>%
mutate(nrow = rownames(.)) %>%
filter(secondType == thirdType) %>%
select(nrow) %>%
unlist()
(pandas的行位置从0开始,R则从1开始)
pandas / R返回数据的位置
- python解法
np.argwhere(df['salary'] > df['salary'].mean())[2]
# array([5], dtype=int64)
- R解法
df %>%
mutate(nrow = rownames(.)) %>%
filter(salary > mean(salary)) %>%
select(nrow) %>%
filter(row_number() == 3)
# # A tibble: 1 x 1
# nrow
# <chr>
# 1 6
- python解法
df[['salary']].apply(np.sqrt)
- R解法
df %>%
summarise(salary_sqrt = sqrt(salary))
pandas / R
- python解法
df['split'] = df['linestaion'].str.split('_')
- R解法
df <- df %>%
mutate(split = str_split(linestaion,'_'))
pandas / R
- python解法
df.shape[1]
# 54
- R解法
length(df)
# [1] 54
- python解法
df[df['industryField'].str.startswith('数据')]
- R解法
df[grep("^数据", df$industryField),]
以salary score 和 positionID制作数据透视
- python解法
pd.pivot_table(df,values=["salary","score"],index="positionId")
- R解法
df <- df %>%
group_by(positionId) %>%
dplyr::summarise(salary = mean(salary),
score = mean(score)) %>%
as.data.frame(.)
rownames(df) <- NULL
tibble::column_to_rownames(df,var='positionId')
pandas / R
- python解法
df[["salary","score"]].agg([np.sum,np.mean,np.min])
- R解法
res <- df %>%
select(salary,score) %>%
pivot_longer(c(salary,score),names_to = 'type',values_to = 'value') %>%
group_by(type) %>%
summarise(sum = sum(value),mean = mean(value),min = min(value))
rownames(res) <- NULL
res %>%
column_to_rownames('type') %>%
t(.)
pandas / R
- python解法
df.agg({"salary":np.sum,"score":np.mean})
- R解法
df %>%
summarise(salary_sum = sum(salary),
score_mean = mean(score))
pandas / R
- python解法
df[['district','salary']].groupby(by='district').mean().sort_values(
'salary',ascending=False).head(1)
- R解法
df %>%
group_by(district) %>%
summarise(avg = mean(salary)) %>%
arrange(desc(avg)) %>%
filter(row_number() == 1)
pandas / R
以上就是R语言和python共同挑战数据分析120题的全部内容
网友评论