美文网首页
数据集的划分

数据集的划分

作者: dingtom | 来源:发表于2020-12-04 09:37 被阅读0次

Holdout检验

按一定比例划分为训练集和测试集
这种方法也称为保留法。我们通常取8-2、7-3、6-4、5-5比例切分,直接将数据随机划分为训练集和测试集,然后使用训练集来生成模型,再用测试集来测试模型的正确率和误差,以验证模型的有效性。
在验证集上计算出来的最后评估指标与原始分组有很大关系。

k-fold cross validation交叉验证法

交叉验证一般采用k折交叉验证,即,往往k取为10。在这种数据集划分法中,我们将数据集划分为k个子集,每个子集均做一次测试集,每次将其余的作为训练集。在交叉验证时,我们重复训练k次,每次选择一个子集作为测试集,并将k次的平均交叉验证的正确率作为最终的结果。

K越大,Bias越小。Variance越大
最后,我们要说说K的选取。事实上,和开头给出的文章里的部分内容一样,K的选取是一个Bias和Variance的trade-off。
K越大,每次投入的训练集的数据越多,模型的Bias越小。但是K越大,又意味着每一次选取的训练集之前的相关性越大(考虑最极端的例子,当k=N,也就是在LOOCV里,每次都训练数据几乎是一样的)。而这种大相关性会导致最终的test error具有更大的Variance。
一般来说,根据经验我们一般选择k=5或10。

Bootstrap自助法

不管是 Holdout检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这可能会影响模型训练效果。有没有能维持训练集样本规模的验证方法呢?自助法可以比较好地解决这个问题。自助法是基于自助采样法的检验方法。对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集。n次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,将这些没有被抽出的样本作为验证集,进行模型验证,这就是自助法的验证过程。

相关文章

  • sklearn数据集的获取与划分

    划分数据集 获取sklearn本地的数据集 描述iris数据集 从网络获取数据集 网络获取 划分训练集和测试集 数...

  • 决策树(二)

    划分数据集 分类算法除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确地划分了数据集。...

  • 2018-04-25 第五周

    本周任务:按照标准的数据集划分,即训练集:2 测试集:1的比例划分数据,测试模型效果。 首先,划分...

  • 决策树算法

    原理 通过选择最好的特征来划分数据集,对数据子集继续划分,直到数据子集中是相同的类别;划分数据集的特征可以通过计算...

  • 数据集的划分&更改评估指标

    数据集划分为 训练集 开发集(交叉验证集) 测试集,最大化团队效率。 如何划分 将所有的数据随机洗牌,放入交叉验证...

  • 数据集划分

    常用方法:(1)简单分离训练集和测试集,(2)K折交叉验证分离1.最简单分离测试集和测试集:train_test_...

  • 数据集划分

    看了几个大佬的数据集划分总觉得有些可能是后期进行过修改的,于是决定先用最简单的数据集划分方式,如下图: (修改:所...

  • 模型评估与选择

    1. 数据集划分 1.1 留出法(hold - out):直接将数据集D划分成两个互斥的集合,训练集S、测试集T,...

  • 数据集的划分

    数据集的划分 因为sqoop是将数据的迁移任务转化为相应的Haoop任务的,Hadoop任务是数据集划分的,即每个...

  • 数据集的划分

    Holdout检验 按一定比例划分为训练集和测试集这种方法也称为保留法。我们通常取8-2、7-3、6-4、5-5比...

网友评论

      本文标题:数据集的划分

      本文链接:https://www.haomeiwen.com/subject/wydmwktx.html