美文网首页
[LeetCode] 64. Minimum Path Sum

[LeetCode] 64. Minimum Path Sum

作者: hugo54 | 来源:发表于2019-12-13 14:07 被阅读0次

    动态规划的解法

    class Solution {
        public int minPathSum(int[][] grid) {
            if (grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            // 设f[i][j]为从左上角到坐标(i, j)的最小路径和
            // 状态转移方程: f[i][j] = min{ f[i - 1][j], f[i][j - 1] } + grid[i][j]
            // 初始条件:    f[0][0] = grid[0][0]
            // 边界条件:
            // 1. f[0][j] = f[0][j - 1] + grid[i][j]
            // 2. f[i][0] = f[i - 1][0] + grid[i][j]
            int m = grid.length;
            int n = grid[0].length;
            int f[][] = new int[m][n];
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    if (i == 0 && j == 0) {
                        f[i][j] = grid[0][0];
                    } else if (i == 0) {
                        f[i][j] = f[i][j - 1] + grid[i][j];
                    } else if (j == 0) {
                        f[i][j] = f[i - 1][j] + grid[i][j];
                    } else {
                        f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
                    }
                }
            }
            return f[m - 1][n - 1];
        }
    }
    

    空间压缩

    由于第i行的f[i][j]只由第i行和第i - 1行的数据所决定,所以我们可以进行空间复用,把空间复杂度从O(m * n)压缩到O(n)(其中m是行数,n是列数)。在动态规划中,压缩行或是列取决于哪个更大。

    class Solution {
        public int minPathSum(int[][] grid) {
            if (grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            // 设f[i][j]为从左上角到坐标(i, j)的最小路径和
            // f[i][j] = min{ f[i - 1][j], f[i][j - 1] } + a[i][j]
            int m = grid.length;
            int n = grid[0].length;
            // 只有两个状态,所以只开两行的空间
            int f[][] = new int[2][n];
            // 设两个滚动的状态
            // old: i - 1
            // now: i
            int old, now = 0;
            for (int i = 0; i < m; i++) {
                // 对于每一个新行,交换old和now
                old = now;
                now = 1 - now;
                for (int j = 0; j < n; j++) {
                    if (i == 0 && j == 0) {
                        f[now][j] = grid[0][0];
                    } else if (i == 0) {
                        f[now][j] = f[now][j - 1] + grid[i][j];
                    } else if (j == 0) {
                        f[now][j] = f[old][j] + grid[i][j];
                    } else {
                        f[now][j] = Math.min(f[old][j], f[now][j - 1]) + grid[i][j];
                    }
                }
            }
            return f[now][n - 1];
        }
    }
    

    如何打印路径

    class Solution {
        public int minPathSum(int[][] grid) {
            if (grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            final int m = grid.length;
            final int n = grid[0].length;
            int[][] f = new int[m][n];
    
            // decision[i][j] = 'U':f(i, j)使用的是来自上方的sum
            // decision[i][j] = 'L':f(i, j)使用的是来自左方的sum
            char[][] decision = new char[m][n];
    
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    if (i == 0 && j == 0) {
                        f[i][j] = grid[0][0];
                    } else if (i == 0) {
                        f[i][j] = f[i][j - 1] + grid[i][j];
                        decision[i][j] = 'L';
                    } else if (j == 0) {
                        f[i][j] = f[i - 1][j] + grid[i][j];
                        decision[i][j] = 'U';
                    } else {
                        int t = Math.min(f[i - 1][j], f[i][j - 1]);
                        f[i][j] = t + grid[i][j];
                        decision[i][j] = t == f[i - 1][j] ? 'U' : 'L';
                    }
                }
            }
            // 从左上走到右下有多少步?m + n - 1步
            int[] path = new int[m + n - 1];
            int i = m - 1;
            int j = n - 1;
            // 根据决策从最后一步还原到第一步
            for (int p = m + n - 2; p >= 0; p--) {
                path[p] = grid[i][j];
                if (decision[i][j] == 'U') {
                    i--;
                } else if (decision[i][j] == 'L') {
                    j--;
                }
            }
            // 从第一步打印到最后一步
            for (int p = 0; p < m + n - 1; p++) {
                System.out.print(path[p] + " ");
            }
            System.out.println();
    
            return f[m - 1][n - 1];
        }
    
        public static void main(String[] args) {
            Solution solution = new Solution();
            int[][] grid = {{1, 5, 7, 6, 8}, {4, 7, 4, 4, 9}, {10, 3, 2, 3, 2}};
            System.out.println(solution.minPathSum(grid));
        }
    }
    

    相关文章

      网友评论

          本文标题:[LeetCode] 64. Minimum Path Sum

          本文链接:https://www.haomeiwen.com/subject/wyyfnctx.html