概括来说,qemu和KVM在内存管理上的关系就是:在虚拟机启动时,qemu在qemu进程地址空间申请内存,即内存的申请是在用户空间完成的。通过kvm提供的API,把地址信息注册到KVM中,这样KVM中维护有虚拟机相关的slot,这些slot构成了一个完整的虚拟机物理地址空间。slot中记录了其对应的HVA,页面数、起始GPA等,利用它可以把一个GPA转化成HVA,这正是KVM维护EPT的技术核心。整个内存虚拟化可以分为两部分:qemu部分和kvm部分。qemu完成内存的申请,kvm实现内存的管理。
qemu与KVM内存管理的分工.png- qemu中地址空间分两部分,两个全局变量system_memory和system_IO,其中system_memory是所有memory_region的父object,他们只负责管理内存。
- 在KVM中,也有两个全局变量address_space_memory和address_space_memory_IO,与qemu中的memory_region对应,只有将HVA和GPA的对应关系注册到KVM模块的memslot,才可以生效成为EPT。
在qemu 2.9的前端virtio和dpdk17.05的后端vhost-user构成的虚拟队列中,会率先通过socket建立连接,将qemu中virtio的内存布局传给vhost,vhost收到包(该消息机制有自己的协议,暂称为msg)后,分析其中的信息,这里面通信包含一套自己写的协议。包含以下内容,均是在刚建立连接时候传递的:
static const char *vhost_message_str[VHOST_USER_MAX] = {
[VHOST_USER_NONE] = "VHOST_USER_NONE",
[VHOST_USER_GET_FEATURES] = "VHOST_USER_GET_FEATURES",
[VHOST_USER_SET_FEATURES] = "VHOST_USER_SET_FEATURES",
[VHOST_USER_SET_OWNER] = "VHOST_USER_SET_OWNER",
[VHOST_USER_RESET_OWNER] = "VHOST_USER_RESET_OWNER",
[VHOST_USER_SET_MEM_TABLE] = "VHOST_USER_SET_MEM_TABLE",
[VHOST_USER_SET_LOG_BASE] = "VHOST_USER_SET_LOG_BASE",
[VHOST_USER_SET_LOG_FD] = "VHOST_USER_SET_LOG_FD",
[VHOST_USER_SET_VRING_NUM] = "VHOST_USER_SET_VRING_NUM",
[VHOST_USER_SET_VRING_ADDR] = "VHOST_USER_SET_VRING_ADDR",
[VHOST_USER_SET_VRING_BASE] = "VHOST_USER_SET_VRING_BASE",
[VHOST_USER_GET_VRING_BASE] = "VHOST_USER_GET_VRING_BASE",
[VHOST_USER_SET_VRING_KICK] = "VHOST_USER_SET_VRING_KICK",
[VHOST_USER_SET_VRING_CALL] = "VHOST_USER_SET_VRING_CALL",
[VHOST_USER_SET_VRING_ERR] = "VHOST_USER_SET_VRING_ERR",
[VHOST_USER_GET_PROTOCOL_FEATURES] = "VHOST_USER_GET_PROTOCOL_FEATURES",
[VHOST_USER_SET_PROTOCOL_FEATURES] = "VHOST_USER_SET_PROTOCOL_FEATURES",
[VHOST_USER_GET_QUEUE_NUM] = "VHOST_USER_GET_QUEUE_NUM",
[VHOST_USER_SET_VRING_ENABLE] = "VHOST_USER_SET_VRING_ENABLE",
[VHOST_USER_SEND_RARP] = "VHOST_USER_SEND_RARP",
[VHOST_USER_NET_SET_MTU] = "VHOST_USER_NET_SET_MTU",
};
其中我们最关心的就是vhost_user_set_mem_table:
static int
vhost_user_set_mem_table(struct virtio_net *dev, struct VhostUserMsg *pmsg)
{
...
for (i = 0; i < memory.nregions; i++) {
fd = pmsg->fds[i];
reg = &dev->mem->regions[i];
reg->guest_phys_addr = memory.regions[i].guest_phys_addr;
reg->guest_user_addr = memory.regions[i].userspace_addr;
reg->size = memory.regions[i].memory_size;
reg->fd = fd;
mmap_offset = memory.regions[i].mmap_offset;
mmap_size = reg->size + mmap_offset;
/* mmap() without flag of MAP_ANONYMOUS, should be called
* with length argument aligned with hugepagesz at older
* longterm version Linux, like 2.6.32 and 3.2.72, or
* mmap() will fail with EINVAL.
*
* to avoid failure, make sure in caller to keep length
* aligned.
*/
alignment = get_blk_size(fd);
if (alignment == (uint64_t)-1) {
RTE_LOG(ERR, VHOST_CONFIG,
"couldn't get hugepage size through fstat\n");
goto err_mmap;
}
mmap_size = RTE_ALIGN_CEIL(mmap_size, alignment);
mmap_addr = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE, fd, 0);
//对每个region调用mmap映射共享内存
if (mmap_addr == MAP_FAILED) {
RTE_LOG(ERR, VHOST_CONFIG,
"mmap region %u failed.\n", i);
goto err_mmap;
}
...
return 0;
err_mmap:
free_mem_region(dev);
rte_free(dev->mem);
dev->mem = NULL;
return -1;
}
另外,我们在实际运行系统的过程中发现,qemu的内存布局和vhost端的内存布局,虽是通过共享内存建立的,但是既不是一整块内存映射,也不是通过零碎的region一小块一小块的映射。它们的内存布局如下:
virtio前后端的内存布局.png在vhost这边只有两块region,而且像是将前端的内存region做了一个聚合得到的。回归代码,发现消息传递之前,传递的并非是memory_region变量,而是memory_region_section,在qemu的vhost_set_memory函数中,有这样一个操作:
if (add) {
/* Add given mapping, merging adjacent regions if any */
vhost_dev_assign_memory(dev, start_addr, size, (uintptr_t)ram);
} else {
/* Remove old mapping for this memory, if any. */
vhost_dev_unassign_memory(dev, start_addr, size);
}
将毗邻的memory_region合并了,这样就解释的通了。因为memory_region是一个树状结构,且有包含关系在里面,所以如果一个个传递,vhost里面用for循环进行映射到自己地址空间,效率低下,而且大多数内存vhost用不到,没有必要这么细分。
网友评论