SurfaceFlinger是android显示的核心进程,在整个显示框架中起到一个承上启下的作用,“承上”指的是与app进程间的通信,“启下”指的是与Composer进程的通信。Surfaceflinger本身不进行绘制,是app数据上屏的中枢通路,先来看下SurfaceFlinger在整个显示流程中的位置。
显示流程图.png
从显示流程图看可知,SurfaceFlinger位于中间层的位置,目前的应用会调起renderthread使用GPU来渲染,应用侧使用surface来管理显示数据,surfaceflinger使用layer来对应应用侧的surface,surfaceflinger会根据合成的方式,选择device还是GPU合成,最后将layer数据提交给Composer进程,进而通过display 驱动上屏。本文就来研究下app和SurfaceFlinger之间的通信,主要针对native层的分析,代码基于android11。
APP与SurfaceFlinger之间的连接
首先框架会创建surfaceControl来管理surface,在jni层会创建一个surfaceComposerClient对象,这个对象是负责与SurfaceFlinger进程通信的重要载体。
文件:frameworks/base/core/jni/android_view_SurfaceControl.cpp
static jlong nativeCreate(JNIEnv* env, jclass clazz, jobject sessionObj,
jstring nameStr, jint w, jint h, jint format, jint flags, jlong parentObject,
jobject metadataParcel) {
ScopedUtfChars name(env, nameStr);
sp<SurfaceComposerClient> client;
if (sessionObj != NULL) {
client = android_view_SurfaceSession_getClient(env, sessionObj);
} else {
// 如果java侧没有该对象则创建SurfaceComposerClient对象
client = SurfaceComposerClient::getDefault();
}
SurfaceControl *parent = reinterpret_cast<SurfaceControl*>(parentObject);
sp<SurfaceControl> surface;
...
// 通过SurfaceComposerClient创建一个Surface
status_t err = client->createSurfaceChecked(
String8(name.c_str()), w, h, format, &surface, flags, parent, std::move(metadata));
...
// 返回给上层surface对象
return reinterpret_cast<jlong>(surface.get());
}
文件:frameworks/native/libs/gui/SurfaceComposerClient.cpp
sp<SurfaceComposerClient> SurfaceComposerClient::getDefault() {
return DefaultComposerClient::getComposerClient();
}
class DefaultComposerClient: public Singleton<DefaultComposerClient> {
Mutex mLock;
sp<SurfaceComposerClient> mClient;
friend class Singleton<ComposerService>;
public:
static sp<SurfaceComposerClient> getComposerClient() {
// 使用单例模式创建DefaultComposerClient 对象
DefaultComposerClient& dc = DefaultComposerClient::getInstance();
Mutex::Autolock _l(dc.mLock);
if (dc.mClient == nullptr) {
// 创建SurfaceComposerClient 对象
dc.mClient = new SurfaceComposerClient;
}
return dc.mClient;
}
};
// 由于SurfaceComposerClient是sp指针,第一次创建时会执行onFirstRef 函数
void SurfaceComposerClient::onFirstRef() {
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
if (sf != nullptr && mStatus == NO_INIT) {
sp<ISurfaceComposerClient> conn;
conn = sf->createConnection();
if (conn != nullptr) {
mClient = conn;
mStatus = NO_ERROR;
}
}
}
//在getComposerService 函数中调connectLocked来get到SurfaceFlinger服务并注册了死亡监听
void ComposerService::connectLocked() {
const String16 name("SurfaceFlinger");
while (getService(name, &mComposerService) != NO_ERROR) {
usleep(250000);
}
assert(mComposerService != nullptr);
// Create the death listener.
class DeathObserver : public IBinder::DeathRecipient {
ComposerService& mComposerService;
virtual void binderDied(const wp<IBinder>& who) {
ALOGW("ComposerService remote (surfaceflinger) died [%p]",
who.unsafe_get());
mComposerService.composerServiceDied();
}
public:
explicit DeathObserver(ComposerService& mgr) : mComposerService(mgr) { }
};
mDeathObserver = new DeathObserver(*const_cast<ComposerService*>(this));
IInterface::asBinder(mComposerService)->linkToDeath(mDeathObserver);
}
文件:frameworks/native/services/surfaceflinger/surfaceflinger.cpp
// 与SurfaceFlinger建立联系,Client持有SurfaceFlinger对象
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
const sp<Client> client = new Client(this);
return client->initCheck() == NO_ERROR ? client : nullptr;
}
看注释,至此完成了从SurfaceControl-> SurfaceComposerClient -> SurfaceFlinger的连接过程。应用要创建Surface时,对应SurfaceFlinger会创建layer与之对应。
文件:frameworks/native/libs/gui/SurfaceComposerClient.cpp
status_t SurfaceComposerClient::createSurfaceChecked(const String8& name, uint32_t w, uint32_t h,
PixelFormat format,
sp<SurfaceControl>* outSurface, uint32_t flags,
SurfaceControl* parent, LayerMetadata metadata,
uint32_t* outTransformHint) {
sp<SurfaceControl> sur;
...
// 会执行到Client.cpp里面的createSurface
err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),
&handle, &gbp, &transformHint);
...
ALOGE_IF(err, "SurfaceComposerClient::createSurface error %s", strerror(-err));
if (err == NO_ERROR) {
// 根据返回的handle 和 gbp 创建 SurfaceControl
*outSurface = new SurfaceControl(this, handle, gbp, transformHint);
}
}
return err;
}
文件: frameworks/native/services/surfaceflinger/Client.cpp
status_t Client::createSurface(const String8& name, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags, const sp<IBinder>& parentHandle,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, uint32_t* outTransformHint) {
// We rely on createLayer to check permissions.
return mFlinger->createLayer(name, this, w, h, format, flags, std::move(metadata), handle, gbp,
parentHandle, nullptr, outTransformHint);
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
tatus_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
...
sp<Layer> layer;
...
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
// 对于surface类型创建layer类型,主要看下带有BufferQueue的layer
result = createBufferQueueLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), format, handle, gbp, &layer);
break;
...
// 将创建的layer放到mCurrentState 里面,SurfaceFlinger内部管理了mCurrentState 和 mDrawingState
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
addToCurrentState, outTransformHint);
...
setTransactionFlags(eTransactionNeeded);
return result;
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
...
sp<BufferQueueLayer> layer;
LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
...
Mutex::Autolock lock(mStateLock);
layer = getFactory().createBufferQueueLayer(args);
...
if (err == NO_ERROR) {
// 在surfaceflinger侧 new了一个handle,这个handle指向这个layer
*handle = layer->getHandle();
//gbp是创建的BufferQueueProducer对象
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
return err;
}
文件: frameworks/native/services/surfaceflinger/SurfaceFlingerDefaultFactory.cpp
sp<BufferQueueLayer> DefaultFactory::createBufferQueueLayer(const LayerCreationArgs& args) {
// new 了BufferQueueLayer对象,sp指针第一次创建时会执行onFirstRef 函数
return new BufferQueueLayer(args);
}
文件:frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp
void BufferQueueLayer::onFirstRef() {
BufferLayer::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
// 创建一个BufferQueue对象,跟着创建一个BufferQueueCore, BufferQueueProducer和 BufferQueueConsumer对象
mFlinger->getFactory().createBufferQueue(&producer, &consumer, true);
// 对producer 的一个封装,MonitoredProducer实质与 producer无差别
mProducer = mFlinger->getFactory().createMonitoredProducer(producer, mFlinger, this);
// 创建BufferLayerConsumer ,首先创建父类ConsumerBase 对象
mConsumer =
mFlinger->getFactory().createBufferLayerConsumer(consumer, mFlinger->getRenderEngine(),
mTextureName, this);
...
// 注册了一个监听,将BufferQueueLayer的函数方法注册到BufferQueueCore里面,说明当Buffer有变化时会通知BufferQueueLayer执行相应的动作
mContentsChangedListener = new ContentsChangedListener(this);
mConsumer->setContentsChangedListener(mContentsChangedListener);
mConsumer->setName(String8(mName.data(), mName.size()));
// BufferQueueCore::mMaxDequeuedBufferCount is default to 1
// 设置producer最大dequeue的buffer数量
if (!mFlinger->isLayerTripleBufferingDisabled()) {
mProducer->setMaxDequeuedBufferCount(2);
}
}
文件:frameworks/native/services/surfaceflinger/Layer.cpp
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
if (mGetHandleCalled) {
ALOGE("Get handle called twice" );
return nullptr;
}
mGetHandleCalled = true;
// 创建一个handle对应layer
return new Handle(mFlinger, this);
}
看注释,SurfaceFlinger侧创建了handle和GraphicsBufferProducer对象给到SurfaceControl,handle 指向surfaceflinger的layer,GraphicsBufferProducer 提供surface对Buffer的操作接口,上层操作surface的handle来作用到surfaceflinger的layer。至此,surfaceflinger创建layer的流程分析完了,比较绕的地方是涉及BufferQueue对象之间的关系,用一副类的关系图来说明之间的关系。
BufferQueue类图.png
APP与SurfaceFlinger之间数据的传递
现在应用一般采用GPU去渲染加速,GPU操作在RenderThread里(HWUI 里面的逻辑很复杂,后续会进行剖析),应用要绘制数据首先需要申请一块Buffer,由前面分析可知,应用是一个GraphicsBufferProducer的角色,故可以通过dequeueBuffer来向surfaceflinger申请一块Buffer。
DequeueBuffer
文件: frameworks/native/libs/gui/Surface.cpp
int Surface::dequeueBuffer(android_native_buffer_t** buffer, int* fenceFd) {
ATRACE_CALL();
ALOGV("Surface::dequeueBuffer");
...
// 从应用进程调到SurfaceFlinger进程,实现在SurfaceFlinger侧
status_t result = mGraphicBufferProducer->dequeueBuffer(&buf, &fence, reqWidth, reqHeight,
reqFormat, reqUsage, &mBufferAge,
enableFrameTimestamps ? &frameTimestamps
: nullptr);
...
// 后续会通过requestBuffer拿到Buffer
sp<GraphicBuffer>& gbuf(mSlots[buf].buffer);
...
// requestBuffer将通过importBuffer将Buffer映射到应用进程
result = mGraphicBufferProducer->requestBuffer(buf, &gbuf);
...
*buffer = gbuf.get();
...
mDequeuedSlots.insert(buf);
return OK;
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::dequeueBuffer(int* outSlot, sp<android::Fence>* outFence,
uint32_t width, uint32_t height, PixelFormat format,
uint64_t usage, uint64_t* outBufferAge,
FrameEventHistoryDelta* outTimestamps) {
...
int found = BufferItem::INVALID_BUFFER_SLOT;
while (found == BufferItem::INVALID_BUFFER_SLOT) {
// 优先从mFreeBuffers 里面获取slot, 若没有则从mFreeSlots 里面获取,从mFreeSlots 里面获取的都是还未分配Buffer的slot
status_t status = waitForFreeSlotThenRelock(FreeSlotCaller::Dequeue, lock, &found);
...
}
if (returnFlags & BUFFER_NEEDS_REALLOCATION) {
...
//若得到的slot对应的buffer为空则重新分配一块GraphicsBuffer
sp<GraphicBuffer> graphicBuffer = new GraphicBuffer(
width, height, format, BQ_LAYER_COUNT, usage,
{mConsumerName.string(), mConsumerName.size()});
...
mSlots[*outSlot].mGraphicBuffer = graphicBuffer;
...
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
...
mSlots[slot].mRequestBufferCalled = true;
// GraphicsBuffer跨进程传递执行unflatten
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
文件: frameworks/native/libs/ui/GraphicBuffer.cpp
status_t GraphicBuffer::unflatten(void const*& buffer, size_t& size, int const*& fds,
size_t& count) {
...
if (handle != nullptr) {
buffer_handle_t importedHandle;
status_t err = mBufferMapper.importBuffer(handle, uint32_t(width), uint32_t(height),
uint32_t(layerCount), format, usage, uint32_t(stride), &importedHandle);
...
handle = importedHandle;
...
return NO_ERROR;
}
应用的surface执行dequeueBuffer是在应用进程,具体实现是通过BufferQueueProducer的dequeueBuffer,是在SurfaceFlinger进程,所以需要通过requestBuffer将Buffer映射到应用进程,具体实现是通过importBuffer。真正分配Buffer的地方是在ion,ion是怎么分配Buffer的,以及Buffer怎么实现app和SurfaceFlinger共享,先用一张简图概述下,后续会分析。
Buffer共享.png
至此app就拿到了可绘制的Buffer,GPU可以将数据渲染到这块Buffer上。GPU将数据渲染到Buffer后,会执行eglSwapBuffers交换front和back buffer,eglSwapBuffers会调用queueBuffer,android系统用queueBuffer来请求vsync 唤醒SurfaceFlinger刷新。
queueBuffer
文件: frameworks/native/libs/gui/Surface.cpp
int Surface::queueBuffer(android_native_buffer_t* buffer, int fenceFd) {
...
// dequeue出来的buffer对应的slot
int i = getSlotFromBufferLocked(buffer);
...
// 传入一些参数,其中 fenceFd 是由GPU带过来的,表示GPU渲染是否完成,这里为acquireFence
IGraphicBufferProducer::QueueBufferInput input(timestamp, isAutoTimestamp,
static_cast<android_dataspace>(mDataSpace), crop, mScalingMode,
mTransform ^ mStickyTransform, fence, mStickyTransform,
mEnableFrameTimestamps);
...
// 调到SurfaceFlinger进程的queueBuffer
status_t err = mGraphicBufferProducer->queueBuffer(i, input, &output);
...
}
文件: frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::queueBuffer(int slot,
const QueueBufferInput &input, QueueBufferOutput *output) {
...
BufferItem item;
...
// 将数据同步到item对象
item.mAcquireCalled = mSlots[slot].mAcquireCalled;
item.mGraphicBuffer = mSlots[slot].mGraphicBuffer;
item.mCrop = crop;
item.mTransform = transform &
~static_cast<uint32_t>(NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
item.mTransformToDisplayInverse =
(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
item.mScalingMode = static_cast<uint32_t>(scalingMode);
item.mTimestamp = requestedPresentTimestamp;
item.mIsAutoTimestamp = isAutoTimestamp;
item.mDataSpace = dataSpace;
item.mHdrMetadata = hdrMetadata;
item.mFrameNumber = currentFrameNumber;
item.mSlot = slot;
item.mFence = acquireFence;
item.mFenceTime = acquireFenceTime;
item.mIsDroppable = mCore->mAsyncMode ||
(mConsumerIsSurfaceFlinger && mCore->mQueueBufferCanDrop) ||
(mCore->mLegacyBufferDrop && mCore->mQueueBufferCanDrop) ||
(mCore->mSharedBufferMode && mCore->mSharedBufferSlot == slot);
item.mSurfaceDamage = surfaceDamage;
item.mQueuedBuffer = true;
item.mAutoRefresh = mCore->mSharedBufferMode && mCore->mAutoRefresh;
item.mApi = mCore->mConnectedApi;
...
// 把item放到mQueue里面
mCore->mQueue.push_back(item);
// 这里的mCore->mConsumerListener 实际上为ConsumerBase对象
frameAvailableListener = mCore->mConsumerListener;
...
if (frameAvailableListener != nullptr) {
frameAvailableListener->onFrameAvailable(item);
}...
}
文件: frameworks/native/libs/gui/ConsumerBase.cpp
void ConsumerBase::onFrameAvailable(const BufferItem& item) {
CB_LOGV("onFrameAvailable");
sp<FrameAvailableListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mFrameAvailableMutex);
listener = mFrameAvailableListener.promote();
}
if (listener != nullptr) {
CB_LOGV("actually calling onFrameAvailable");
// listener实际上是BufferQueueLayer对象
listener->onFrameAvailable(item);
}
}
根据类图关系,frameAvailableListener 实际上是ConsumerBase 对象,在ConsumerBase 初始化的时候进行赋值,通过 mConsumer->consumerConnect(proxy, controlledByApp)接口,所以会调到ConsumerBase::onFrameAvailable, 而mFrameAvailableListener 是BufferQueueLayer -> setContentsChangedListener(mContentsChangedListener) 设的,实际上是 BufferQueueLayer对象,因此最后走到BufferQueueLayer::onFrameAvailable 逻辑里面了。
文件: frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp
void BufferQueueLayer::onFrameAvailable(const BufferItem& item) {
...
// 将item 放到mQueueItems里面
mQueueItems.push_back(item);
mQueuedFrames++;
...
// 申请vsync去触发surfaceflinger刷新
mFlinger->signalLayerUpdate();
mConsumer->onBufferAvailable(item);
}
文件: frameworks/native/services/surfaceflinger/Scheduler/EventThread.cpp
void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) {
if (connection->resyncCallback) {
connection->resyncCallback();
}
std::lock_guard<std::mutex> lock(mMutex);
if (connection->vsyncRequest == VSyncRequest::None) {
// Vsync请求置为Single
connection->vsyncRequest = VSyncRequest::Single;
mCondition.notify_all();
}
}
让Surfaceflinger刷新需要2个必要条件: 1. 有requestNextVsync 的请求 2. 软件vsync计算模型回调 onVSyncEvent创建一个vsyncEvent,涉及到vsync模型,后面会介绍。
到这里,app完成了与SurfaceFlinger的连接以及将应用数据传给到SurfaceFlinger。这里需要注意的是,其实SurfaceFlinger并不会动Buffer里面的数据,只是中间传递的一个过程,Buffer数据是由GPU渲染,display显示,下篇分析下SurfaceFlinger在刷新时做了哪些动作。
网友评论