美文网首页
OKHttp解析

OKHttp解析

作者: 黄大大吃不胖 | 来源:发表于2017-06-21 21:44 被阅读0次

    解析OKHttp首先走一遍正常的流程,然后将比较有意思的点拿出来说明

    正常流程分析

    1.OkHttpClient初始化
    OkHttpClient mOkHttpClient = new OkHttpClient();
    
    

    通过代码查看,可以看到调用了内部的Builder构造

    如下

    public Builder() {
          //调度器
          dispatcher = new Dispatcher();
          //默认支持的协议列表
          protocols = DEFAULT_PROTOCOLS;
          //默认的连接规范
          connectionSpecs = DEFAULT_CONNECTION_SPECS;
          eventListenerFactory = EventListener.factory(EventListener.NONE);
          //默认的代理选择器(直连)
          proxySelector = ProxySelector.getDefault();
          //默认不管理cookie
          cookieJar = CookieJar.NO_COOKIES;
          socketFactory = SocketFactory.getDefault();
          //主机验证
          hostnameVerifier = OkHostnameVerifier.INSTANCE;
          //证书锁,默认不开启
          certificatePinner = CertificatePinner.DEFAULT;
          //默认不进行授权
          proxyAuthenticator = Authenticator.NONE;
          authenticator = Authenticator.NONE;
          //初始化连接池
          connectionPool = new ConnectionPool();
          //DNS
          dns = Dns.SYSTEM;
          followSslRedirects = true;
          followRedirects = true;
          retryOnConnectionFailure = true;
          //超时时间
          connectTimeout = 10_000;
          readTimeout = 10_000;
          writeTimeout = 10_000;
          pingInterval = 0;
    }
    
    

    接下来介绍下关于上面的OkHttpClient配置需要用到的类

    Dispatcher

    调度器,里面包含了线程池和三个队列(readyAsyncCalls:保存等待执行的异步请求;runningAsyncCalls:保存正在运行的异步请求;runningSyncCalls:保存正在执行的同步请求)

    //保存准备运行的异步请求(当运行请求超过限制数时会保存在此队列)
    private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
    //保存正在运行的异步请求
    private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
    //保存正在运行的同步请求
    private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
    

    对于异步请求,调用Dispatcher的enqueue方法,在这个方法会将相关请求提交到线程池中操作,从而异步执行

    synchronized void enqueue(AsyncCall call) {
        //检查容量大小
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
          runningAsyncCalls.add(call);//加入队列
          executorService().execute(call);//执行
        } else {
          //超过容量大小后,加入准备队列中
          readyAsyncCalls.add(call);
        }
      }
    
    

    对于同步请求,不需要提交到线程池执行,通过Dispatcher的executed方法调用即可

    synchronized void executed(RealCall call) {
        runningSyncCalls.add(call);
    }
    

    当请求执行完毕后,调用finished将请求从runningAsyncCalls队列中移除,并且检查readyAsyncCalls以继续提交在队列中准备的请求。

    
    //移除执行完毕的请求
    synchronized void finished(AsyncCall call) {
       if (!runningAsyncCalls.remove(call)) throw new AssertionError("AsyncCall wasn't running!");
       promoteCalls();//推进请求队列
    }
    
    //推进请求
    private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; //容量已满,不提交新请求
        if (readyAsyncCalls.isEmpty()) return; // 没有正在准备的请求,返回
    
       //从readyAsyncCalls中循环取出AsyncCall直到达到容量上限
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
    
          if (runningAsyncCalls.size() >= maxRequests) return; // 达到上限后返回
        }
      }
    
    

    Protocal

    协议类,用来表示使用的协议版本,比如http/1.0,http/1.1,spdy/3.1,h2等

    ConnectionSpecs

    连接规范,用于配置Socket连接层,对于HTTPS,还能配置安全传输层协议(TLS)版本与密码套件(CipherSuite)

    Proxy与ProxySelector

    Proxy代理类,默认有三种代理模式DIRECT(直连),HTTP(Http代理),SOCKS(socks代理)
    ProxySelector代理选择类,默认不使用代理,即使用直连方式,当然,我们可以自定义配置,以指定URI使用某种代理,类似代理软件的PAC功能。

    CookieJar

    用来管理cookie,可以根据url保存cookie,也可以通过url取出相应cookie。默认的不做cookie管理。该接口中有两个抽象方法,用户可以自己实现该接口以对cookie进行管理。

      //保存cookie
      void saveFromResponse(HttpUrl url, List<Cookie> cookies);
    
      //根据Url导入保存的Cookie
      List<Cookie> loadForRequest(HttpUrl url);
    

    SocketFactory

    Socket工厂,通过createSocket来创建Socket

    HostnameVerifier

    主机名验证器,与HTTPS中的SSL相关,当握手时如果URL的主机名不是可识别的主机,就会要求进行主机名验证

    public interface HostnameVerifier {
    
         //通过session验证指定的主机名是否被允许
        boolean verify(String hostname, SSLSession session);
    }
    

    CertificatePinner

    证书锁,HTTPS相关,用于约束哪些证书可以被信任,可以防止一些已知或未知的中间证书机构带来的攻击行为。如果所有证书都不被信任将抛出SSLPeerUnverifiedException异常。

    其中用于检查证书是否被信任的源码如下:

    //检查证书是否被信任
     public void check(String hostname, List<Certificate> peerCertificates)
          throws SSLPeerUnverifiedException {
        List<Pin> pins = findMatchingPins(hostname);//获取Pin(网址,hash算法,hash值)
        if (pins.isEmpty()) return;
    
        if (certificateChainCleaner != null) {
           //通过清洁器获取信任的证书
           peerCertificates = certificateChainCleaner.clean(peerCertificates, hostname);
        }
    
        for (int c = 0, certsSize = peerCertificates.size(); c < certsSize; c++) {
          //对证书进行比对hash值,如果配对失败就抛出SSLPeerUnverifiedException异常
          X509Certificate x509Certificate = (X509Certificate) peerCertificates.get(c);
    
          // Lazily compute the hashes for each certificate.
          ByteString sha1 = null;
          ByteString sha256 = null;
    
          for (int p = 0, pinsSize = pins.size(); p < pinsSize; p++) {
            Pin pin = pins.get(p);
            if (pin.hashAlgorithm.equals("sha256/")) {
              if (sha256 == null) sha256 = sha256(x509Certificate);
              if (pin.hash.equals(sha256)) return; // Success!
            } else if (pin.hashAlgorithm.equals("sha1/")) {
              if (sha1 == null) sha1 = sha1(x509Certificate);
              if (pin.hash.equals(sha1)) return; // Success!
            } else {
              throw new AssertionError();
            }
          }
        }
    
        // ...
     }
    

    Authenticator

    身份认证器,当连接提示未授权时,可以通过重新设置请求头来响应一个新的Request。状态码401表示远程服务器请求授权,407表示代理服务器请求授权。该认证器在需要时会被RetryAndFollowUpInterceptor触发。

    public interface Authenticator {
    
      Authenticator NONE = new Authenticator() {
        @Override public Request authenticate(Route route, Response response) {
          return null;
        }
      };
    
      Request authenticate(Route route, Response response) throws IOException;
    }
    
    

    关于授权的源码实现如下:

    class MyAuthenticator implements Authenticator {
    
            @Override
            public Request authenticate(Route route, Response response) throws IOException {
                String credential = Credentials.basic(...)
    
                Request.Builder builder=response.request().newBuilder();
    
                if(response.code()==401){
                    builder .header("Authorization", credential);
                }else if(response.code()==407){
                    builder .header("Proxy-Authorization", credential);
                }
    
                return  builder.build();
    
            }
        }
    
    

    ConnectionPool

    连接池,用于管理HTTP和SPDY连接的复用以减少网络延迟,HTTP请求相同的Address时可以共享同一个连接。

    DNS

    DNS这里就不用介绍了,用于根据主机名来查询对应的IP。

    2.发起请求

    使用OKHttp发送请求一般有两种方式,一种是同步方式,一种是异步方式,如下

    //异步方式
    Request request = new Request.Builder()
                       .url("").build();
    Call call = mOkHttpClient.newCall(request);
    call.enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {
    
        }
    
        @Override
        public void onResponse(Call call, Response response) throws IOException {
    
        }
    });
    
    //同步方式
    try {
        Request request = new Request.Builder()
                   .url("").build();
        Call call = mOkHttpClient.newCall(request);
        Response response = call.execute();
    } catch (IOException e) {
        e.printStackTrace();
    }
    

    接下来我们分别从源码角度分析下这两种方式

    首先是同步方式

    @Override public Response execute() throws IOException {
      synchronized (this) {
        if (executed) throw new IllegalStateException("Already Executed");
        executed = true;
      }
      captureCallStackTrace();
      try {
        client.dispatcher().executed(this);
        Response result = getResponseWithInterceptorChain();
        if (result == null) throw new IOException("Canceled");
        return result;
      } finally {
        client.dispatcher().finished(this);
      }
    }
    

    这里收先调用了Dispatcher的executed方法,将这个请求加入runningAsyncCalls队列中,然后调用getResponseWithInterceptorChain方法获取Respone,这个就是我们请求后得到的回复,获取后返回这个Respone,最后在finally调用了Dispatcher的finished方法,将请求从runningAsyncCalls队列中移除

    接下来是异步方式

      @Override public void enqueue(Callback responseCallback) {
        synchronized (this) {
          if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
        }
        captureCallStackTrace();
        client.dispatcher().enqueue(new AsyncCall(responseCallback));
      }
    
    

    可以看到调用Dispatcher的enqueue方法传递了一个AsyncCall对象,注意这个AsyncCall对象继承Runnable接口,所以在当在线程池中运行会调用AsyncCall中的execute方法,接下来我们看下AsyncCall的execute方法,如下

    @Override protected void execute() {
        boolean signalledCallback = false;
        try {
          Response response = getResponseWithInterceptorChain();
          if (retryAndFollowUpInterceptor.isCanceled()) {
            signalledCallback = true;
            responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
          } else {
            signalledCallback = true;
            responseCallback.onResponse(RealCall.this, response);
          }
        } catch (IOException e) {
          if (signalledCallback) {
            // Do not signal the callback twice!
            Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
          } else {
            responseCallback.onFailure(RealCall.this, e);
          }
        } finally {
          client.dispatcher().finished(this);
        }
      }
    }
    

    可以看到这里调用getResponseWithInterceptorChain方法获取Respone,接下来通过回调传递出去,最后在finally调用了Dispatcher的finished方法,将请求从runningAsyncCalls队列中移除

    通过这两个代码分析,可以知道获取Respone都是通过getResponseWithInterceptorChain方法,唯一的区别是一个是在主线程中,另外一个在线程池中的线程,接下来看一下getResponseWithInterceptorChain方法,如下

    Response getResponseWithInterceptorChain() throws IOException {
        // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(client.interceptors());
        interceptors.add(retryAndFollowUpInterceptor);
        interceptors.add(new BridgeInterceptor(client.cookieJar()));
        interceptors.add(new CacheInterceptor(client.internalCache()));
        interceptors.add(new ConnectInterceptor(client));
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        Interceptor.Chain chain = new RealInterceptorChain(
            interceptors, null, null, null, 0, originalRequest);
        return chain.proceed(originalRequest);
    }
    

    这里是真正发出网络请求的地方,可以看到这里有很多个Interceptor,Interceptor是OkHttp中最核心的一个东西,它把实际的网络请求、缓存、透明压缩等功能都统一了起来,每一个功能都只是一个 Interceptor,它们再连接成一个 Interceptor.Chain,环环相扣,最终圆满完成一次网络请求。

    从 getResponseWithInterceptorChain 函数我们可以看到,Interceptor.Chain 的分布依次是:

    ![](http://i4.buimg.com/519918/6d74ff7c4d531915.png =350x434)

    流程如下:

    1.在配置 OkHttpClient 时设置的 interceptors;

    2.负责失败重试以及重定向的 RetryAndFollowUpInterceptor;

    3.负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 BridgeInterceptor;

    4.负责读取缓存直接返回、更新缓存的 CacheInterceptor;

    5.负责和服务器建立连接的 ConnectInterceptor;

    6.配置 OkHttpClient 时设置的 networkInterceptors;

    7.负责向服务器发送请求数据、从服务器读取响应数据的 CallServerInterceptor。

    这里很明显的是使用了责任链模式,接下来就是分析一下每一个Interceptor究竟是干了什么事情

    3.分析Interceptor

    1.RetryAndFollowUpInterceptor 重试与重定向拦截器

    这个拦截器主要用来实现重试与重定向的功能,核心代码如下

    @Override 
    public Response intercept(Chain chain) throws IOException {
      Request request = chain.request();
    
      //初始化流分配器 
      streamAllocation = new StreamAllocation(
          client.connectionPool(), createAddress(request.url()));
    
      int followUpCount = 0;
      Response priorResponse = null;
      while (true) {//死循环
        //..
        //省略了部分源码
        Response response = null;
        boolean releaseConnection = true;
    
        try {
    
           response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null);
          releaseConnection = false;
    
        } catch (Exception e) {
          //..
        //省略了部分源码
          releaseConnection = false;
          continue;
        } finally {
    
          if (releaseConnection) {
            streamAllocation.streamFailed(null);
            streamAllocation.release();
          }
        }
    
    
        //将上次的请求放入priorResponse中
        if (priorResponse != null) {
          response = response.newBuilder()
              .priorResponse(priorResponse.newBuilder()
                  .body(null)
                  .build())
              .build();
        }
    
        //检查是否触发重定向重试等条件,并返回Request
        Request followUp = followUpRequest(response);
    
        if (followUp == null) {//null表示无需重试
          if (!forWebSocket) {
            streamAllocation.release();
          }
          return response;//返回response
        }
    
        //..
        //省略了部分源码
    
        request = followUp;
        priorResponse = response;
        //while循环进行下次请求
      }
    }
    

    通过代码可以发现RetryAndFollowUpInterceptor内部通过while(true)死循环来进行重试获取Response(有重试上限,超过会抛出异常)。followUpRequest主要用来根据响应码来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建响应的Request进行下一次请求。当然,如果没有触发重新请求就会直接返回Response。

    2.BridgeInterceptor 桥接拦截器

    桥接拦截器,用于完善请求头,比如Content-Type、Content-Length、Host、Connection、Accept-Encoding、User-Agent等等,这些请求头不用用户一一设置,如果用户没有设置该库会检查并自动完善。此外,这里会进行加载和回调cookie。

    核心代码如下:

    @Override 
    public Response intercept(Chain chain) throws IOException {
      Request userRequest = chain.request();
      Request.Builder requestBuilder = userRequest.newBuilder();
    
      RequestBody body = userRequest.body();
      //将用户没有写入请求头的内容自动补充进去,比如Content-Type、Content-Length、Host、Connection、Accept-Encoding、User-Agent等等
      if (body != null) {
    
        MediaType contentType = body.contentType();
        if (contentType != null) {
          requestBuilder.header("Content-Type", contentType.toString());
        }
    
        //..
      }
      //获取cookie添加到请求头中
      List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
      if (!cookies.isEmpty()) {
        requestBuilder.header("Cookie", cookieHeader(cookies));
      }
      //...
      Response networkResponse = chain.proceed(requestBuilder.build());
    
      //将响应cookie回调出去供用户保存
      HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
      Response.Builder responseBuilder = networkResponse.newBuilder()
          .request(userRequest);
    
        //...
        //省略了部分源码
        responseBuilder.headers(strippedHeaders);
        responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
      return responseBuilder.build();
    }
    

    3.CacheInterceptor 缓存拦截器

    缓存拦截器首先根据Request中获取缓存的Response,然后根据用于设置的缓存策略来进一步判断缓存的Response是否可用以及是否发送网络请求(CacheControl.FORCE_CACHE因为不会发送网络请求,所以networkRequest一定为空)。如果从网络中读取,此时再次根据缓存策略来决定是否缓存响应。

    核心代码如下:

    @Override 
    public Response intercept(Chain chain) throws IOException {
        //通过Request从缓存中获取Response
        Response cacheCandidate = cache != null
            ? cache.get(chain.request())
            : null;
    
        long now = System.currentTimeMillis();
    
        //根据请求头获取用户指定的缓存策略,并根据缓存策略来获取networkRequest,cacheResponse。cacheResponse为null表示当前策略就算有缓存也不读缓存
        CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
        Request networkRequest = strategy.networkRequest;//表示发往网络的request,不请求网络应为null
        Response cacheResponse = strategy.cacheResponse;//返回从缓存中读取的response
    
        if (cache != null) {
          cache.trackResponse(strategy);
        }
    
    
        if (cacheCandidate != null && cacheResponse == null) {
          //cacheResponse表示不读缓存,那么cacheCandidate不可用,关闭它
          closeQuietly(cacheCandidate.body()); 
        }
    
        //..
        //省略了部分源码
        //返回从缓存中读取的Response
        if (networkRequest == null) {
          return cacheResponse.newBuilder()
              .cacheResponse(stripBody(cacheResponse))
              .build();
        }
    
          Response networkResponse = null;
          //..
          //省略了部分源码
    
          //获取网络Response
          networkResponse = chain.proceed(networkRequest);
    
        Response response = networkResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
    
        if (HttpHeaders.hasBody(response)) {
          //如果可以缓存(用户允许,响应也允许)就进行缓存到本地
          CacheRequest cacheRequest = maybeCache(response, networkResponse.request(), cache);
          response = cacheWritingResponse(cacheRequest, response);
        }
    
        return response;
    }
    
    

    配置缓存策略的方法如下:

    Request request = new Request.Builder()
                    .cacheControl(CacheControl.FORCE_NETWORK)
                    .url("")
                    .build();
    
    

    4.ConnectInterceptor 连接拦截器

    连接拦截器,用于打开一个连接到远程服务器。

    核心代码如下

    @Override 
    public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Request request = realChain.request();
        StreamAllocation streamAllocation = realChain.streamAllocation();
    
        boolean doExtensiveHealthChecks = !request.method().equals("GET");
        //获取HttpStream
        HttpStream httpStream = streamAllocation.newStream(client, doExtensiveHealthChecks);
        //获取RealConnection
        RealConnection connection = streamAllocation.connection();
    
        return realChain.proceed(request, streamAllocation, httpStream, connection);
    }
    
    

    实际上建立连接就是创建了一个HttpCodec对象,它将在后面的步骤中被使用,那它又是何方神圣呢?它是对HTTP协议操作的抽象,有两个实现:Http1Codec和Http2Codec,顾名思义,它们分别对应HTTP/1.1和HTTP/2版本的实现。

    在Http1Codec中,它利用Okio对Socket的读写操作进行封装,我们对它们保持一个简单地认识:它对java.io和java.nio进行了封装,让我们更便捷高效的进行IO操作。

    5.CallServerInterceptor 调用服务拦截器

    调用服务拦截器是拦截链中的最后一个拦截器,通过网络与调用服务器。通过HttpStream依次次进行写请求头、请求头(可选)、读响应头、读响应体。

    @Override 
    public Response intercept(Chain chain) throws IOException {
        HttpStream httpStream = ((RealInterceptorChain) chain).httpStream();
        StreamAllocation streamAllocation = ((RealInterceptorChain) chain).streamAllocation();
        Request request = chain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
        //写请求头
        httpStream.writeRequestHeaders(request);
    
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
        //写请求体
          Sink requestBodyOut = httpStream.createRequestBody(request, request.body().contentLength());
          BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
          request.body().writeTo(bufferedRequestBody);
          bufferedRequestBody.close();
        }
    
        httpStream.finishRequest();
    
        //获取Response。
        Response response = httpStream.readResponseHeaders()
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        //写入Response的body
        if (!forWebSocket || response.code() != 101) {
          response = response.newBuilder()
              .body(httpStream.openResponseBody(response))
              .build();
        }
    
        //...
        return response;
    }
    

    这里主要做的事情:

    1.向服务器发送request header;

    2.如果有request body,就向服务器发送;

    3.读取response header,先构造一个Response对象;

    4.如果有response body,就在3的基础上加上body构造一个新的Response对象;

    这里我们可以看到,核心工作都由HttpCodec对象完成,而HttpCodec实际上利用的是Okio,而Okio实际上还是用的Socket。

    到这里,一个请求的流程就基本走完了。接下来说一下OKHttp中比较有意思的点。

    OKHttp有意思的点

    相关文章

      网友评论

          本文标题:OKHttp解析

          本文链接:https://www.haomeiwen.com/subject/xbztcxtx.html