美文网首页
Keras.backend.local_conv1d 纪要

Keras.backend.local_conv1d 纪要

作者: HITMiner | 来源:发表于2018-11-08 15:30 被阅读61次

    K.local_conv1d

    • 关键输入
      1. inputs: 3D tensor with shape: (batch_size, steps, input_dim)
      2. kernel: the unshared weight for convolution,
        with shape (output_length, feature_dim, filters)
      3. kernel_size: a tuple of a single integer,
        specifying the length of the 1D convolution window
      4. strides: a tuple of a single integer,
        specifying the stride length of the convolution
    • 注意点
      1. steps表示kernel要在该维度上移动
      2. steps维度的大小应该等于 (output_length-1)*stride + kernel_size
      3. feature_dim 应该是被 batch_size * kernel_size * input_dim 整除

    K.local_conv2d

    • 输入
      1. inputs: 4D tensor with shape:
        (batch_size, filters, new_rows, new_cols)
        if data_format='channels_first'
        or 4D tensor with shape:
        (batch_size, new_rows, new_cols, filters)
        if data_format='channels_last'.
      2. kernel: the unshared weight for convolution,
        with shape (output_items, feature_dim, filters)
      3. kernel_size: a tuple of 2 integers, specifying the
        width and height of the 2D convolution window.
      4. strides: a tuple of 2 integers, specifying the strides
        of the convolution along the width and height.
      5. output_shape: a tuple with (output_row, output_col)
      6. data_format: the data format, channels_first or channels_last
    • output_row, output_col的要求和local_conv1d中output_length的要求类似
    • kernel 中的 feature_dim 应该可以被 batch_size * filters * kernel_size[0] * kernel_size[1] 整除
    • kernel中的output_items = output_shape[0] * output_shape[1]
    • kernel中的feature_dim的含义是什么?难道要等于 kernel_size[0]*kernel_size[0]
    • inputs中的 filters 指输入filter
    • kernel中的filters 指输出filter, 输入中的filter和输出中的filter 不必相等
    • 要想输出的batch_size 等于 输入的batch_size, kernel中的feature_dim应该等等于kernel_size[0] * kernel_size[1] * 输入中的filters
    • 返回
      A 4d tensor with shape:
      (batch_size, filters, new_rows, new_cols)
      if data_format='channels_first'
      or 4D tensor with shape:
      `(batch_size, new_rows, new_cols, filters)
      if data_format='channels_last'.

    相关文章

      网友评论

          本文标题:Keras.backend.local_conv1d 纪要

          本文链接:https://www.haomeiwen.com/subject/xdaixqtx.html